OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..260
FORMULA
E.g.f.: A(x) = exp( Sum_{n>=1} A074206(n)*x^n ) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ n! * exp(2/5 + (1 + 1/r) * (-Gamma(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) / Zeta'(r))^(1/(2*(1+r))) / (sqrt(2*Pi*(1+r)) * n^((2+r)/(2*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018
PROG
(PARI) {a(n)=local(A=1+x); for(i=2, n, A=exp(x+x*O(x^n))*prod(n=2, i, subst(A, x, x^n+x*O(x^i)))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2007
EXTENSIONS
PARI program fixed by Vaclav Kotesovec, Feb 26 2014
STATUS
approved