OFFSET
1,2
LINKS
José María Grau Ribas, A complete family of non-isomorphic rings of the type Zn(A,B,a,b,c,d)
José María Grau Ribas, Mathematica code
José María Grau Ribas, Antonio M. Oller-Marcén, and Steve Szabo, Minimal rings related to generalized quaternion rings, Int'l Electronic J. Algebra (2023).
EXAMPLE
For n=2:
Z/2Z<x,y>/(x^2, y^2, y*x),
Z/2Z<x,y>/(x^2, y^2, y*x + x*y),
Z/2Z<x,y>/(x^2, y^2, y*x + 1 + x*y),
so a(2)=3.
For n=3, a complete family of non-isomorphic cases {A,B,a,b,c,d} are:
{0,0,0,0,0,0}, {0,0,0,0,0,1}, {0,0,0,0,0,2}, {0,0,1,0,0,2},
{0,1,0,0,0,1}, {0,1,0,0,0,2}, {0,1,0,1,0,0}, {0,2,0,0,0,1}, {0,2,0,0,0,2},
{1,0,0,0,1,0}, {1,1,0,0,0,1}, {1,1,1,1,2,0}, {1,2,0,0,0,1},
so a(3)=13.
MATHEMATICA
a[1]=1; a[p_, 1]:= (12 + (p - 1)/2); a[2, 1]=3; a[2, 2]= 97; a[2, 3]=624; a[3, 2]=67; a[n_]:=Module[{aux=FactorInteger[n]}, Product[a[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]]; Table[a[n], {n, 1, 15}]
CROSSREFS
KEYWORD
nonn,mult,more
AUTHOR
José María Grau Ribas, Mar 08 2021
STATUS
approved