OFFSET
0,1
COMMENTS
A triangulation is metrically regular if all its triangles are congruent.
LINKS
Dintle N Kagiso, triangulation of snowflake
Wikipedia, Koch snowflake
Index entries for linear recurrences with constant coefficients, signature (13, -36).
FORMULA
a(n+1) = (1/5) * (44*9^n + 21*4^n) for all n > -1.
a(0)=3, a(1)=13, a(2)=96, a(n) = 13*a(n-1)-36*a(n-2) for n > 2.
G.f.: (3-26*x+35*x^2)/((1-4*x)*(1-9*x)).
EXAMPLE
a(1) = 1+2+3+4+3 = 13 because an equilateral triangle can be cut up into 9 triangles with side length one-third which have 1+2+3+4 = 10 vertices and 3 further triangles yield 3 additional vertices.
MAPLE
L:=[3, 13, 96]: for k from 4 to 34 do: L:=[op(L), 13*L[k-1]-36*L[k-2]]: od: print(L);
MATHEMATICA
Table[(Boole[n == 0] 35/36) + (44*9^# + 21*4^#)/5 &[n - 1], {n, 0, 19}] (* or *)
CoefficientList[Series[(3 - 26 x + 35 x^2)/((1 - 4 x) (1 - 9 x)), {x, 0, 19}], x] (* Michael De Vlieger, Oct 21 2016 *)
LinearRecurrence[{13, -36}, {3, 13, 96}, 30] (* Harvey P. Dale, Sep 17 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Dintle N Kagiso, Oct 17 2016
STATUS
approved