login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonisomorphic rings Z/nZ<x,y>/(x^2 - A, y^2 - B, y*x - a - b*x - c*y - d*x*y) of order n^4.
1

%I #45 Apr 18 2023 11:47:19

%S 1,3,13,97,14,39,15,624,67,42,17,1261,18,45,182

%N Number of nonisomorphic rings Z/nZ<x,y>/(x^2 - A, y^2 - B, y*x - a - b*x - c*y - d*x*y) of order n^4.

%H José María Grau Ribas, <a href="/A342305/a342305.pdf">A complete family of non-isomorphic rings of the type Zn(A,B,a,b,c,d)</a>

%H José María Grau Ribas, <a href="/A342305/a342305_3.nb">Mathematica code</a>

%H José María Grau Ribas, Antonio M. Oller-Marcén, and Steve Szabo, <a href="https://doi.org/10.24330/ieja.1281705">Minimal rings related to generalized quaternion rings</a>, Int'l Electronic J. Algebra (2023).

%e For n=2:

%e Z/2Z<x,y>/(x^2, y^2, y*x),

%e Z/2Z<x,y>/(x^2, y^2, y*x + x*y),

%e Z/2Z<x,y>/(x^2, y^2, y*x + 1 + x*y),

%e so a(2)=3.

%e For n=3, a complete family of non-isomorphic cases {A,B,a,b,c,d} are:

%e {0,0,0,0,0,0}, {0,0,0,0,0,1}, {0,0,0,0,0,2}, {0,0,1,0,0,2},

%e {0,1,0,0,0,1}, {0,1,0,0,0,2}, {0,1,0,1,0,0}, {0,2,0,0,0,1}, {0,2,0,0,0,2},

%e {1,0,0,0,1,0}, {1,1,0,0,0,1}, {1,1,1,1,2,0}, {1,2,0,0,0,1},

%e so a(3)=13.

%t a[1]=1; a[p_,1]:= (12 + (p - 1)/2); a[2, 1]=3; a[2,2]= 97; a[2,3]=624; a[3, 2]=67; a[n_]:=Module[{aux=FactorInteger[n]},Product[a[aux[[i,1]], aux[[i,2]]], {i, Length[aux]}]]; Table[a[n], {n, 1, 15}]

%Y Cf. A341548, A341547, A341201, A341202, A037234, A037291, A127708, A127707, A037289, A037290, A038036, A307000, A339948, A000005.

%K nonn,mult,more

%O 1,2

%A _José María Grau Ribas_, Mar 08 2021