|
|
A197735
|
|
Decimal expansion of 3*Pi/(1 + Pi).
|
|
2
|
|
|
2, 2, 7, 5, 6, 4, 0, 9, 7, 8, 9, 8, 4, 3, 2, 8, 4, 3, 6, 0, 3, 3, 2, 9, 2, 0, 6, 7, 1, 3, 4, 6, 7, 8, 5, 9, 2, 4, 1, 5, 2, 7, 9, 0, 9, 6, 9, 2, 1, 5, 9, 2, 9, 9, 0, 0, 0, 6, 9, 6, 4, 6, 4, 1, 3, 4, 7, 6, 4, 4, 4, 1, 1, 3, 0, 2, 8, 7, 2, 1, 2, 8, 9, 6, 1, 8, 9, 9, 5, 2, 2, 0, 4, 6, 0, 6, 7, 3, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/6 and c=Pi/6; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
Index entries for transcendental numbers
|
|
EXAMPLE
|
2.27564097898432843603329206713467859241...
|
|
MATHEMATICA
|
b = 1/6; c = Pi/6;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 2.27, 2.28}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197735 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi}]
|
|
CROSSREFS
|
Cf. A197682.
Sequence in context: A309554 A011146 A241370 * A249493 A223000 A058625
Adjacent sequences: A197732 A197733 A197734 * A197736 A197737 A197738
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 17 2011
|
|
STATUS
|
approved
|
|
|
|