login
A197735
Decimal expansion of 3*Pi/(1 + Pi).
2
2, 2, 7, 5, 6, 4, 0, 9, 7, 8, 9, 8, 4, 3, 2, 8, 4, 3, 6, 0, 3, 3, 2, 9, 2, 0, 6, 7, 1, 3, 4, 6, 7, 8, 5, 9, 2, 4, 1, 5, 2, 7, 9, 0, 9, 6, 9, 2, 1, 5, 9, 2, 9, 9, 0, 0, 0, 6, 9, 6, 4, 6, 4, 1, 3, 4, 7, 6, 4, 4, 4, 1, 1, 3, 0, 2, 8, 7, 2, 1, 2, 8, 9, 6, 1, 8, 9, 9, 5, 2, 2, 0, 4, 6, 0, 6, 7, 3, 1
OFFSET
1,1
COMMENTS
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/6 and c=Pi/6; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
2.27564097898432843603329206713467859241...
MATHEMATICA
b = 1/6; c = Pi/6;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 2.27, 2.28}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197735 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi}]
CROSSREFS
Cf. A197682.
Sequence in context: A309554 A011146 A241370 * A249493 A223000 A058625
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved