login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058625 McKay-Thompson series of class 30d for Monster. 2
1, 2, 2, 7, 5, 11, 21, 24, 31, 49, 57, 85, 114, 144, 179, 251, 306, 390, 511, 619, 772, 1008, 1203, 1498, 1862, 2255, 2757, 3407, 4067, 4927, 6005, 7180, 8581, 10395, 12266, 14652, 17542, 20673, 24452, 29057, 34058, 40172, 47332, 55341, 64719, 75999, 88401, 103051, 120225, 139348 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The convolution square of this sequence is A153765: T30d(q)^2 = T15A(q^2). - G. A. Edgar, Mar 18 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..500 from G. A. Edgar)

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

a(n) ~ exp(2*Pi*sqrt(2*n/15))/ (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 18 2017

Expansion of A + 3*q/A, where A = q^(1/2)*eta(q)*eta(q^5)/(eta(q^3)* eta(q^15)), in powers of q. - G. C. Greubel, Jun 14 2018

EXAMPLE

T30d = 1/q + 2*q + 2*q^3 + 7*q^5 + 5*q^7 + 11*q^9 + 21*q^11 + 24*q^13 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*eta[q]*eta[q^5]/(eta[q^3]* eta[q^15]);  a:= CoefficientList[Series[A + 3*q/A, {q, 0, 60}], q]; Table[A058625[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)

PROG

(PARI) q='q+O('q^50); A = eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)); Vec(A + 3*q/A) \\ G. C. Greubel, Jun 14 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A197735 A249493 A223000 * A300126 A006748 A193548

Adjacent sequences:  A058622 A058623 A058624 * A058626 A058627 A058628

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:04 EDT 2019. Contains 328301 sequences. (Running on oeis4.)