The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058625 McKay-Thompson series of class 30d for Monster. 2
 1, 2, 2, 7, 5, 11, 21, 24, 31, 49, 57, 85, 114, 144, 179, 251, 306, 390, 511, 619, 772, 1008, 1203, 1498, 1862, 2255, 2757, 3407, 4067, 4927, 6005, 7180, 8581, 10395, 12266, 14652, 17542, 20673, 24452, 29057, 34058, 40172, 47332, 55341, 64719, 75999, 88401, 103051, 120225, 139348 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The convolution square of this sequence is A153765: T30d(q)^2 = T15A(q^2). - G. A. Edgar, Mar 18 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..500 from G. A. Edgar) D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). Index entries for McKay-Thompson series for Monster simple group FORMULA a(n) ~ exp(2*Pi*sqrt(2*n/15))/ (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 18 2017 Expansion of A + 3*q/A, where A = q^(1/2)*eta(q)*eta(q^5)/(eta(q^3)* eta(q^15)), in powers of q. - G. C. Greubel, Jun 14 2018 EXAMPLE T30d = 1/q + 2*q + 2*q^3 + 7*q^5 + 5*q^7 + 11*q^9 + 21*q^11 + 24*q^13 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*eta[q]*eta[q^5]/(eta[q^3]* eta[q^15]); a:= CoefficientList[Series[A + 3*q/A, {q, 0, 60}], q]; Table[A058625[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *) PROG (PARI) q='q+O('q^50); A = eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)); Vec(A + 3*q/A) \\ G. C. Greubel, Jun 14 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Sequence in context: A197735 A249493 A223000 * A300126 A006748 A193548 Adjacent sequences: A058622 A058623 A058624 * A058626 A058627 A058628 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 27 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:44 EST 2023. Contains 367502 sequences. (Running on oeis4.)