The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275639 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=5. 3
 1, -4, 7, -7, 5, -4, 4, -4, 5, -7, 8, -8, 9, -11, 12, -11, 9, -8, 9, -11, 13, -15, 16, -15, 14, -15, 16, -15, 14, -15, 17, -19, 21, -22, 21, -19, 18, -19, 21, -22, 22, -23, 25, -26, 26, -26, 25, -23, 23, -26, 29, -30, 30, -30, 30, -30, 30, -30, 30, -30, 31, -34, 37, -37, 35, -34, 34, -34, 35 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 A. M. Odlyzko, Differences of the partition function, Acta Arithmetica 49.3 (1988): 237-254. Dennis Stanton and Doron Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof, Proceedings of the American Mathematical Society 107.1 (1989): 39-42. Index entries for linear recurrences with constant coefficients, signature (-4,-9,-15,-20,-22,-20,-15,-9,-4,-1) FORMULA Equivalent g.f.: 1 / ((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - Colin Barker, Aug 10 2016 a(n) = -4*a(n-1) - 9*a(n-2) - 15*a(n-3) - 20*a(n-4) - 22*a(n-5) - 20*a(n-6) - 15*a(n-7) - 9*a(n-8) - 4*a(n-9) - a(n-10). - Ilya Gutkovskiy, Aug 10 2016 PROG (PARI) Vec(1/((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 11 2016 CROSSREFS Cf. A275638. Sequence in context: A084104 A271026 A093582 * A201940 A075113 A197739 Adjacent sequences:  A275636 A275637 A275638 * A275640 A275641 A275642 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Aug 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 09:09 EDT 2021. Contains 345126 sequences. (Running on oeis4.)