login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292386
Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).
4
1, -1, -3, -3, -1, 10, 20, 36, 28, -11, -103, -245, -397, -448, -214, 464, 1817, 3680, 5660, 6473, 4362, -3232, -18428, -41946, -70589, -94890, -96996, -49673, 78907, 317995, 673299, 1105044, 1491333, 1605102, 1094914, -479358, -3561322, -8404118, -14781724, -21595744, -26450603, -25329527
OFFSET
0,3
COMMENTS
Convolution inverse of A000294 (Euler transform of the triangular numbers).
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).
MATHEMATICA
nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: -binomial(n+1, 2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 15 2017
STATUS
approved