|
|
A292386
|
|
Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).
|
|
4
|
|
|
1, -1, -3, -3, -1, 10, 20, 36, 28, -11, -103, -245, -397, -448, -214, 464, 1817, 3680, 5660, 6473, 4362, -3232, -18428, -41946, -70589, -94890, -96996, -49673, 78907, 317995, 673299, 1105044, 1491333, 1605102, 1094914, -479358, -3561322, -8404118, -14781724, -21595744, -26450603, -25329527
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Convolution inverse of A000294 (Euler transform of the triangular numbers).
|
|
LINKS
|
Table of n, a(n) for n=0..41.
|
|
FORMULA
|
G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).
|
|
MATHEMATICA
|
nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
PROG
|
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: -binomial(n+1, 2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
|
|
CROSSREFS
|
Cf. A000294, A027999, A028377.
Sequence in context: A143911 A185422 A131889 * A174287 A186826 A185418
Adjacent sequences: A292383 A292384 A292385 * A292387 A292388 A292389
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Ilya Gutkovskiy, Sep 15 2017
|
|
STATUS
|
approved
|
|
|
|