login
A292385
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 4)].
15
0, 1, 2, 2, 5, 4, 10, 4, 5, 10, 20, 8, 41, 20, 8, 8, 83, 10, 166, 20, 21, 40, 332, 16, 11, 82, 8, 40, 665, 16, 1330, 16, 41, 166, 16, 20, 2661, 332, 80, 40, 5323, 42, 10646, 80, 17, 664, 21292, 32, 23, 22, 164, 164, 42585, 16, 42, 80, 333, 1330, 85170, 32, 170341, 2660, 40, 32, 83, 82, 340682, 332, 665, 32, 681364, 40, 1362729, 5322, 20, 664, 33, 160
OFFSET
1,3
COMMENTS
Variant of A292381. Here the most significant 1-bit is at the one step smaller position.
FORMULA
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 4)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 4k+1, and 0 otherwise.
For n >= 1, a(n) + A292383(n) = A243071(n); a(A163511(n)) = A292271(n).
For n >= 2, A004754(a(n)) = A292381(n).
PROG
(Scheme, with memoization-macro definec)
(definec (A292385 n) (if (<= n 2) (- n 1) (+ (if (= 1 (modulo n 4)) 1 0) (* 2 (A292385 (A252463 n))))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 16 2017
STATUS
approved