login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).
4

%I #8 Nov 11 2020 09:03:54

%S 1,-1,-3,-3,-1,10,20,36,28,-11,-103,-245,-397,-448,-214,464,1817,3680,

%T 5660,6473,4362,-3232,-18428,-41946,-70589,-94890,-96996,-49673,78907,

%U 317995,673299,1105044,1491333,1605102,1094914,-479358,-3561322,-8404118,-14781724,-21595744,-26450603,-25329527

%N Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

%C Convolution inverse of A000294 (Euler transform of the triangular numbers).

%F G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

%t nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

%o (SageMath) # uses[EulerTransform from A166861]

%o b = EulerTransform(lambda n: -binomial(n+1, 2))

%o print([b(n) for n in range(37)]) # _Peter Luschny_, Nov 11 2020

%Y Cf. A000294, A027999, A028377.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Sep 15 2017