login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. (1+x)^((1-sqrt(1-4*x))/(2*x)).
0

%I #9 Jun 27 2013 09:30:03

%S 1,1,2,15,152,2190,39894,886074,23187632,699092136,23860707480,

%T 909507899520,38295831424872,1765316863497720,88423030108046256,

%U 4782130014839166360,277730241327729713280,17239188136821392859840

%N E.g.f. (1+x)^((1-sqrt(1-4*x))/(2*x)).

%F a(n) = n! * sum(k=1..n, k*sum(i=0..n-k, (C(2*(k+i)-k-1,k+i-1) *stirling1(n-i,k))/ ((k+i)*(n-i)!))), n>0, a(0)=1.

%F a(n) ~ 25*log(5/4)*2^(2*n-7/2)*n^(n-1)/exp(n). - _Vaclav Kotesovec_, Jun 27 2013

%t CoefficientList[Series[(1+x)^((1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 27 2013 *)

%o (Maxima) a(n):=n!*sum(k*sum((binomial(2*(k+i)-k-1,k+i-1)*stirling1(n-i,k))/ ((k+i)*(n-i)!),i,0,n-k),k,1,n);

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, May 31 2011