The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325063 G.f. A(x) satisfies: 1 + 3*x = Sum_{n>=0} (3^n + q*sqrt(A(x)))^n * x^n / (1 + 3^n*q*x*sqrt(A(x)))^(n+1), where q = 9/2. 5
1, 162, 480330, 10273699314, 1847922279733674, 2953111740267791663874, 42388685550188054819159463162, 5474356451772724705359722799690452754, 6362678346319775964713654070623548738367762634, 66555927069904206114784802924703047820915991846751358882, 6265787358184263065518163906632414087797095676323706723479988918042 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
For a given integer k > 1, there exists an integer series G(x,k)^2 that satisfies: 1 + k*x = Sum_{n>=0} (k^n + q*G(x,k))^n * x^n / (1 + k^n*q*x*G(x,k))^(n+1) iff q^2 = k^4/(2*k-2). In that case, G(x,k)^2 = 1 + k^3*(k^2-3)*x + k^4*(2*k^8 - 18*k^4 + 21*k^2 + 2*k + 1)*x^2/2 + ...; the g.f. for this sequence is A(x) = G(x,k=3)^2.
LINKS
FORMULA
Let q = 9/2, then g.f. A(x) satisfies:
(1) 1 + 3*x = Sum_{n>=0} (3^n + q * sqrt(A(x)))^n * x^n / (1 + 3^n * q * x*sqrt(A(x)))^(n+1).
(2) 1 + 3*x = Sum_{n>=0} (3^n - q * sqrt(A(x)))^n * x^n / (1 - 3^n * q * x*sqrt(A(x)))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 162*x + 480330*x^2 + 10273699314*x^3 + 1847922279733674*x^4 + 2953111740267791663874*x^5 + 42388685550188054819159463162*x^6 + ...
Let q = 9/2 and B = A(x)^(1/2), then
1 + 3*x = 1/(1 + x*q*B) + (3 + q*B)*x/(1 + 3*x*q*B)^2 + (3^2 + q*B)^2*x^2/(1 + 3^2*x*q*B)^3 + (3^3 + q*B)^3*x^3/(1 + 3^3*x*q*B)^4 + (3^4 + q*B)^4*x^4/(1 + 3^4*x*q*B)^5 + (3^5 + q*B)^5*x^5/(1 + 3^5*x*q*B)^6 + (3^6 + q*B)^6*x^6/(1 + 3^6*x*q*B)^7 + ...
and also
1 + 3*x = 1/(1 - x*q*B) + (3 - q*B)*x/(1 - 3*x*q*B)^2 + (3^2 - q*B)^2*x^2/(1 - 3^2*x*q*B)^3 + (3^3 - q*B)^3*x^3/(1 - 3^3*x*q*B)^4 + (3^4 - q*B)^4*x^4/(1 - 3^4*x*q*B)^5 + (3^5 - q*B)^5*x^5/(1 - 3^5*x*q*B)^6 + (3^6 - q*B)^6*x^6/(1 - 3^6*x*q*B)^7 + ...
PROG
(PARI) /* Set k = 3 to generate this sequence (requires high precision) */
{a(n, k) = my(q = k^2/sqrt(2*k-2), A=[1, k^3*(k^2-3), 0]); for(i=0, n,
A=concat(A, 0); A[#A-1] = round( polcoeff( sum(m=0, #A, (k^m + q * Ser(A)^(1/2))^m * x^m / (1 + k^m * q * x*Ser(A)^(1/2))^(m+1) ), #A)/k^4)); A[n+1]}
for(n=0, 20, print1(a(n, k=3), ", "))
CROSSREFS
Sequence in context: A230837 A183812 A036914 * A214185 A214236 A349511
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:37 EDT 2024. Contains 372664 sequences. (Running on oeis4.)