The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036914 a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4. 1
1, 162, 303750, 995742720, 4202607543750, 20493770553668412, 109738295483524291584, 627433021349790289920000, 3765656995768668039930646470, 23460102529588600192836492187500, 150552597141762184641565143623272500, 989711604190467147276644388444241920000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
From Peter Bala, Aug 07 2016: (Start)
Compare with the identities:
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(3*n,k)^2*binomial(3*n - k,n)^2 = binomial(3n,n)^2*binomial(2*n,n) = A275047(n), and
Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = binomial(3*n,n)*binomial(2*n,n) = (3*n)!/n!^3 = A006480(n). (Sprugnoli, Section 2.9, Table 10, p. 123).
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = A000984(n). (End)
REFERENCES
The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq 21.1, page 72 (see the Formula section).
LINKS
FORMULA
Sum_{k=0..2*n} (-1)^k*C(3*n, k)^3*C(3*n-k, n)^3 = (-1)^n*C(2*n, n)*C(3*n, 2*n)^4.
From Peter Bala, Aug 07 2016: (Start)
a(n) = (3*n)!^4/(n!^6*(2*n)!^3).
a(n) = A005809(n)^4 * A000984(n) = A005809(n)^3 * A006480(n) = A005809(n)^2 * A275047(n).
a(n) = {[x^n] (1 + x)^(3*n)}^4 * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(162*n), where G(x) = 1 + x + 776*x^2 + 1633370*x^3 + 5060509158*x^4 + 19379170742458*x^5 + 84908023350007787*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^162, where F(x) = 1 + x + 938*x^2 + 2049791*x^3 + 6487994244*x^4 + 25309359070330*x^5 + 112932966264239483*x^6 + ... appears to have integer coefficients. (End)
a(n) ~ (9/16)*9^(6*n)/((Pi*n)^(5/2)*64^n). - Ilya Gutkovskiy, Aug 07 2016
MAPLE
seq((3*n)!^4/(n!^6*(2*n)!^3), n = 0..20); # Peter Bala, Aug 07 2016
MATHEMATICA
Table[Binomial[2n, n]Binomial[3n, 2n]^4, {n, 0, 11}] (* Michael De Vlieger, Aug 07 2016 *)
PROG
(Magma) [(n+1)*Binomial(3*n, 2*n)^4*Catalan(n): n in [0..30]]; // G. C. Greubel, Jun 22 2022
(SageMath) b=binomial; [b(2*n, n)*b(3*n, 2*n)^4 for n in (0..30)] # G. C. Greubel, Jun 22 2022
CROSSREFS
Sequence in context: A209965 A230837 A183812 * A325063 A214185 A214236
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 20:38 EDT 2024. Contains 372882 sequences. (Running on oeis4.)