The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036914 a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4. 1
 1, 162, 303750, 995742720, 4202607543750, 20493770553668412, 109738295483524291584, 627433021349790289920000, 3765656995768668039930646470, 23460102529588600192836492187500, 150552597141762184641565143623272500, 989711604190467147276644388444241920000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Peter Bala, Aug 07 2016: (Start) Compare with the identities: Sum_{k = 0..2*n} (-1)^(n+k)*binomial(3*n,k)^2*binomial(3*n - k,n)^2 = binomial(3n,n)^2*binomial(2*n,n) = A275047(n), and Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = binomial(3*n,n)*binomial(2*n,n) = (3*n)!/n!^3 = A006480(n). (Sprugnoli, Section 2.9, Table 10, p. 123). Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = A000984(n). (End) REFERENCES The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq 21.1, page 72 (see the Formula section). LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 R. Sprugnoli, Riordan array proofs of identities in Gould's book FORMULA Sum_{k=0..2*n} (-1)^k*C(3*n, k)^3*C(3*n-k, n)^3 = (-1)^n*C(2*n, n)*C(3*n, 2*n)^4. From Peter Bala, Aug 07 2016: (Start) a(n) = (3*n)!^4/(n!^6*(2*n)!^3). a(n) = A005809(n)^4 * A000984(n) = A005809(n)^3 * A006480(n) = A005809(n)^2 * A275047(n). a(n) = {[x^n] (1 + x)^(3*n)}^4 * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(162*n), where G(x) = 1 + x + 776*x^2 + 1633370*x^3 + 5060509158*x^4 + 19379170742458*x^5 + 84908023350007787*x^6 + ... appears to have integer coefficients. exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^162, where F(x) = 1 + x + 938*x^2 + 2049791*x^3 + 6487994244*x^4 + 25309359070330*x^5 + 112932966264239483*x^6 + ... appears to have integer coefficients. (End) a(n) ~ (9/16)*9^(6*n)/((Pi*n)^(5/2)*64^n). - Ilya Gutkovskiy, Aug 07 2016 MAPLE seq((3*n)!^4/(n!^6*(2*n)!^3), n = 0..20); # Peter Bala, Aug 07 2016 MATHEMATICA Table[Binomial[2n, n]Binomial[3n, 2n]^4, {n, 0, 11}] (* Michael De Vlieger, Aug 07 2016 *) PROG (Magma) [(n+1)*Binomial(3*n, 2*n)^4*Catalan(n): n in [0..30]]; // G. C. Greubel, Jun 22 2022 (SageMath) b=binomial; [b(2*n, n)*b(3*n, 2*n)^4 for n in (0..30)] # G. C. Greubel, Jun 22 2022 CROSSREFS Cf. A000984, A005809, A006480, A275047. Sequence in context: A209965 A230837 A183812 * A325063 A214185 A214236 Adjacent sequences: A036911 A036912 A036913 * A036915 A036916 A036917 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 20:38 EDT 2024. Contains 372882 sequences. (Running on oeis4.)