Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 23 2024 13:35:22
%S 1,162,303750,995742720,4202607543750,20493770553668412,
%T 109738295483524291584,627433021349790289920000,
%U 3765656995768668039930646470,23460102529588600192836492187500,150552597141762184641565143623272500,989711604190467147276644388444241920000
%N a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4.
%C From _Peter Bala_, Aug 07 2016: (Start)
%C Compare with the identities:
%C Sum_{k = 0..2*n} (-1)^(n+k)*binomial(3*n,k)^2*binomial(3*n - k,n)^2 = binomial(3n,n)^2*binomial(2*n,n) = A275047(n), and
%C Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = binomial(3*n,n)*binomial(2*n,n) = (3*n)!/n!^3 = A006480(n). (Sprugnoli, Section 2.9, Table 10, p. 123).
%C Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = A000984(n). (End)
%D The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq 21.1, page 72 (see the Formula section).
%H G. C. Greubel, <a href="/A036914/b036914.txt">Table of n, a(n) for n = 0..250</a>
%H R. Sprugnoli, <a href="http://www.dsi.unifi.it/~resp/GouldBK.pdf">Riordan array proofs of identities in Gould's book</a>
%F Sum_{k=0..2*n} (-1)^k*C(3*n, k)^3*C(3*n-k, n)^3 = (-1)^n*C(2*n, n)*C(3*n, 2*n)^4.
%F From _Peter Bala_, Aug 07 2016: (Start)
%F a(n) = (3*n)!^4/(n!^6*(2*n)!^3).
%F a(n) = A005809(n)^4 * A000984(n) = A005809(n)^3 * A006480(n) = A005809(n)^2 * A275047(n).
%F a(n) = {[x^n] (1 + x)^(3*n)}^4 * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(162*n), where G(x) = 1 + x + 776*x^2 + 1633370*x^3 + 5060509158*x^4 + 19379170742458*x^5 + 84908023350007787*x^6 + ... appears to have integer coefficients.
%F exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^162, where F(x) = 1 + x + 938*x^2 + 2049791*x^3 + 6487994244*x^4 + 25309359070330*x^5 + 112932966264239483*x^6 + ... appears to have integer coefficients. (End)
%F a(n) ~ (9/16)*9^(6*n)/((Pi*n)^(5/2)*64^n). - _Ilya Gutkovskiy_, Aug 07 2016
%p seq((3*n)!^4/(n!^6*(2*n)!^3), n = 0..20); # _Peter Bala_, Aug 07 2016
%t Table[Binomial[2n, n]Binomial[3n, 2n]^4, {n,0,11}] (* _Michael De Vlieger_, Aug 07 2016 *)
%o (Magma) [(n+1)*Binomial(3*n,2*n)^4*Catalan(n): n in [0..30]]; // _G. C. Greubel_, Jun 22 2022
%o (SageMath) b=binomial; [b(2*n,n)*b(3*n,2*n)^4 for n in (0..30)] # _G. C. Greubel_, Jun 22 2022
%Y Cf. A000984, A005809, A006480, A275047.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_