login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325064 G.f. A(x) satisfies: 1 + 4*x = Sum_{n>=0} (4^n + q*sqrt(A(x)))^n * x^n / (1 + 4^n*q*x*sqrt(A(x)))^(n+1), where q = 16/sqrt(6). 5
1, 832, 16231552, 4383914975232, 18441667060507164672, 1237911701841780574060019712, 1329225539699016675929862038567780352, 22835959765541575214125323239846526831707553792, 6277101665234601794192349266350089457547809098694479839232, 27606985363861653513069630388616821266975363206813123963646506195484672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For a given integer k > 1, there exists an integer series G(x,k)^2 that satisfies: 1 + k*x = Sum_{n>=0} (k^n + q*G(x,k))^n * x^n / (1 + k^n*q*x*G(x,k))^(n+1) iff q^2 = k^4/(2*k-2). In that case, G(x,k)^2 = 1 + k^3*(k^2-3)*x + k^4*(2*k^8 - 18*k^4 + 21*k^2 + 2*k + 1)*x^2/2 + ...; the g.f. for this sequence is A(x) = G(x,k=4)^2.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..50

FORMULA

Let q = 16/sqrt(6), then g.f. A(x) satisfies:

(1) 1 + 2*x = Sum_{n>=0} (4^n + q * sqrt(A(x)))^n * x^n / (1 + 4^n * q * x*sqrt(A(x)))^(n+1).

(2) 1 + 2*x = Sum_{n>=0} (4^n - q * sqrt(A(x)))^n * x^n / (1 - 4^n * q * x*sqrt(A(x)))^(n+1).

EXAMPLE

G.f.: A(x) = 1 + 832*x + 16231552*x^2 + 4383914975232*x^3 + 18441667060507164672*x^4 + 1237911701841780574060019712*x^5 + ...

Let q = 16/sqrt(6) and B = A(x)^(1/2), then

1 + 4*x = 1/(1 + x*q*B) + (4 + q*B)*x/(1 + 4*x*q*B)^2 + (4^2 + q*B)^2*x^2/(1 + 4^2*x*q*B)^3 + (4^3 + q*B)^3*x^3/(1 + 4^3*x*q*B)^4 + (4^4 + q*B)^4*x^4/(1 + 4^4*x*q*B)^5 + (4^5 + q*B)^5*x^5/(1 + 4^5*x*q*B)^6 + (4^6 + q*B)^6*x^6/(1 + 4^6*x*q*B)^7 + ...

and also

1 + 4*x = 1/(1 - x*q*B) + (4 - q*B)*x/(1 - 4*x*q*B)^2 + (4^2 - q*B)^2*x^2/(1 - 4^2*x*q*B)^3 + (4^3 - q*B)^3*x^3/(1 - 4^3*x*q*B)^4 + (4^4 - q*B)^4*x^4/(1 - 4^4*x*q*B)^5 + (4^5 - q*B)^5*x^5/(1 - 4^5*x*q*B)^6 + (4^6 - q*B)^6*x^6/(1 - 4^6*x*q*B)^7 + ...

PROG

(PARI) /* Set k = 4 to generate this sequence (requires high precision) */

{a(n, k) = my(q = k^2/sqrt(2*k-2), A=[1, k^3*(k^2-3), 0]); for(i=0, n,

A=concat(A, 0); A[#A-1] = round( polcoeff( sum(m=0, #A, (k^m + q * Ser(A)^(1/2))^m * x^m / (1 + k^m * q * x*Ser(A)^(1/2))^(m+1) ), #A)/k^4)); A[n+1]}

for(n=0, 20, print1(a(n, k=4), ", "))

CROSSREFS

Cf. A325062, A325063, A325065, A325066, A324613.

Sequence in context: A264141 A327604 A264064 * A214481 A202773 A095257

Adjacent sequences:  A325061 A325062 A325063 * A325065 A325066 A325067

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 04:43 EDT 2021. Contains 348313 sequences. (Running on oeis4.)