login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325064
G.f. A(x) satisfies: 1 + 4*x = Sum_{n>=0} (4^n + q*sqrt(A(x)))^n * x^n / (1 + 4^n*q*x*sqrt(A(x)))^(n+1), where q = 16/sqrt(6).
5
1, 832, 16231552, 4383914975232, 18441667060507164672, 1237911701841780574060019712, 1329225539699016675929862038567780352, 22835959765541575214125323239846526831707553792, 6277101665234601794192349266350089457547809098694479839232, 27606985363861653513069630388616821266975363206813123963646506195484672
OFFSET
0,2
COMMENTS
For a given integer k > 1, there exists an integer series G(x,k)^2 that satisfies: 1 + k*x = Sum_{n>=0} (k^n + q*G(x,k))^n * x^n / (1 + k^n*q*x*G(x,k))^(n+1) iff q^2 = k^4/(2*k-2). In that case, G(x,k)^2 = 1 + k^3*(k^2-3)*x + k^4*(2*k^8 - 18*k^4 + 21*k^2 + 2*k + 1)*x^2/2 + ...; the g.f. for this sequence is A(x) = G(x,k=4)^2.
LINKS
FORMULA
Let q = 16/sqrt(6), then g.f. A(x) satisfies:
(1) 1 + 2*x = Sum_{n>=0} (4^n + q * sqrt(A(x)))^n * x^n / (1 + 4^n * q * x*sqrt(A(x)))^(n+1).
(2) 1 + 2*x = Sum_{n>=0} (4^n - q * sqrt(A(x)))^n * x^n / (1 - 4^n * q * x*sqrt(A(x)))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 832*x + 16231552*x^2 + 4383914975232*x^3 + 18441667060507164672*x^4 + 1237911701841780574060019712*x^5 + ...
Let q = 16/sqrt(6) and B = A(x)^(1/2), then
1 + 4*x = 1/(1 + x*q*B) + (4 + q*B)*x/(1 + 4*x*q*B)^2 + (4^2 + q*B)^2*x^2/(1 + 4^2*x*q*B)^3 + (4^3 + q*B)^3*x^3/(1 + 4^3*x*q*B)^4 + (4^4 + q*B)^4*x^4/(1 + 4^4*x*q*B)^5 + (4^5 + q*B)^5*x^5/(1 + 4^5*x*q*B)^6 + (4^6 + q*B)^6*x^6/(1 + 4^6*x*q*B)^7 + ...
and also
1 + 4*x = 1/(1 - x*q*B) + (4 - q*B)*x/(1 - 4*x*q*B)^2 + (4^2 - q*B)^2*x^2/(1 - 4^2*x*q*B)^3 + (4^3 - q*B)^3*x^3/(1 - 4^3*x*q*B)^4 + (4^4 - q*B)^4*x^4/(1 - 4^4*x*q*B)^5 + (4^5 - q*B)^5*x^5/(1 - 4^5*x*q*B)^6 + (4^6 - q*B)^6*x^6/(1 - 4^6*x*q*B)^7 + ...
PROG
(PARI) /* Set k = 4 to generate this sequence (requires high precision) */
{a(n, k) = my(q = k^2/sqrt(2*k-2), A=[1, k^3*(k^2-3), 0]); for(i=0, n,
A=concat(A, 0); A[#A-1] = round( polcoeff( sum(m=0, #A, (k^m + q * Ser(A)^(1/2))^m * x^m / (1 + k^m * q * x*Ser(A)^(1/2))^(m+1) ), #A)/k^4)); A[n+1]}
for(n=0, 20, print1(a(n, k=4), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2019
STATUS
approved