The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324613 G.f. A(x) satisfies: 1 + 4*x = Sum_{n>=0} (4^n + q*A(x))^n * x^n / (1 + 4^n*q*x*A(x))^(n+1), where q = sqrt(128/3). 3
 1, 416, 8029248, 2188617320448, 9219890831036553216, 618951997873353332851408896, 664612512289053409746943478501867520, 11417979606286992596912657092388671906224537600, 3138550827867416043144948384462236556766662742325141176320, 13803492680625189520462719913413857044944571496910203607451430729809920, 971334446046166058747728167330455811906524833831361460284791253155406264015674933248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..50 FORMULA Let q = sqrt(128/3), then g.f. A(x) satisfies: (1) 1 + 4*x = Sum_{n>=0} (4^n + q * A(x))^n * x^n / (1 + 4^n * q * x*A(x))^(n+1). (2) 1 + 4*x = Sum_{n>=0} (4^n - q * A(x))^n * x^n / (1 - 4^n * q * x*A(x))^(n+1). EXAMPLE G.f.: A(x) = 1 + 416*x + 8029248*x^2 + 2188617320448*x^3 + 9219890831036553216*x^4 + 618951997873353332851408896*x^5 + 664612512289053409746943478501867520*x^6 + ... Let q = sqrt(128/3), then 1 + 4*x = 1/(1+x*q*A(x)) + (4 + q*A(x))*x/(1 + 4*x*q*A(x))^2 + (4^2 + q*A(x))^2*x^2/(1 + 4^2*x*q*A(x))^3 + (4^3 + q*A(x))^3*x^3/(1 + 4^3*x*q*A(x))^4 + (4^4 + q*A(x))^4*x^4/(1 + 4^4*x*q*A(x))^5 + (4^5 + q*A(x))^5*x^5/(1 + 4^5*x*q*A(x))^6 + (4^6 + q*A(x))^6*x^6/(1 + 4^6*x*q*A(x))^7 + ... and also 1 + 4*x = 1/(1-x*q*A(x)) + (4 - q*A(x))*x/(1 - 4*x*q*A(x))^2 + (4^2 - q*A(x))^2*x^2/(1 - 4^2*x*q*A(x))^3 + (4^3 - q*A(x))^3*x^3/(1 - 4^3*x*q*A(x))^4 + (4^4 - q*A(x))^4*x^4/(1 - 4^4*x*q*A(x))^5 + (4^5 - q*A(x))^5*x^5/(1 - 4^5*x*q*A(x))^6 + (4^6 - q*A(x))^6*x^6/(1 - 4^6*x*q*A(x))^7 + ... PROG (PARI) /* Requires high precision */ {a(n) = my(q=sqrt(128/3), A=[1, 416, 0]); for(i=0, n, A=concat(A, 0); A[#A-1] = round( polcoeff( sum(n=0, #A, (4^n + q * Ser(A))^n * x^n / (1 + 4^n * q * x*Ser(A))^(n+1) ), #A)/512)); A[n+1]} for(n=0, 10, print1(a(n), ", ")) CROSSREFS Cf. A324299. Sequence in context: A246897 A223422 A239191 * A202527 A224557 A292422 Adjacent sequences: A324610 A324611 A324612 * A324614 A324615 A324616 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 15:25 EDT 2024. Contains 373407 sequences. (Running on oeis4.)