The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324613 G.f. A(x) satisfies: 1 + 4*x = Sum_{n>=0} (4^n + q*A(x))^n * x^n / (1 + 4^n*q*x*A(x))^(n+1), where q = sqrt(128/3). 3
1, 416, 8029248, 2188617320448, 9219890831036553216, 618951997873353332851408896, 664612512289053409746943478501867520, 11417979606286992596912657092388671906224537600, 3138550827867416043144948384462236556766662742325141176320, 13803492680625189520462719913413857044944571496910203607451430729809920, 971334446046166058747728167330455811906524833831361460284791253155406264015674933248 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Let q = sqrt(128/3), then g.f. A(x) satisfies:
(1) 1 + 4*x = Sum_{n>=0} (4^n + q * A(x))^n * x^n / (1 + 4^n * q * x*A(x))^(n+1).
(2) 1 + 4*x = Sum_{n>=0} (4^n - q * A(x))^n * x^n / (1 - 4^n * q * x*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 416*x + 8029248*x^2 + 2188617320448*x^3 + 9219890831036553216*x^4 + 618951997873353332851408896*x^5 + 664612512289053409746943478501867520*x^6 + ...
Let q = sqrt(128/3), then
1 + 4*x = 1/(1+x*q*A(x)) + (4 + q*A(x))*x/(1 + 4*x*q*A(x))^2 + (4^2 + q*A(x))^2*x^2/(1 + 4^2*x*q*A(x))^3 + (4^3 + q*A(x))^3*x^3/(1 + 4^3*x*q*A(x))^4 + (4^4 + q*A(x))^4*x^4/(1 + 4^4*x*q*A(x))^5 + (4^5 + q*A(x))^5*x^5/(1 + 4^5*x*q*A(x))^6 + (4^6 + q*A(x))^6*x^6/(1 + 4^6*x*q*A(x))^7 + ...
and also
1 + 4*x = 1/(1-x*q*A(x)) + (4 - q*A(x))*x/(1 - 4*x*q*A(x))^2 + (4^2 - q*A(x))^2*x^2/(1 - 4^2*x*q*A(x))^3 + (4^3 - q*A(x))^3*x^3/(1 - 4^3*x*q*A(x))^4 + (4^4 - q*A(x))^4*x^4/(1 - 4^4*x*q*A(x))^5 + (4^5 - q*A(x))^5*x^5/(1 - 4^5*x*q*A(x))^6 + (4^6 - q*A(x))^6*x^6/(1 - 4^6*x*q*A(x))^7 + ...
PROG
(PARI) /* Requires high precision */
{a(n) = my(q=sqrt(128/3), A=[1, 416, 0]); for(i=0, n,
A=concat(A, 0); A[#A-1] = round( polcoeff( sum(n=0, #A, (4^n + q * Ser(A))^n * x^n / (1 + 4^n * q * x*Ser(A))^(n+1) ), #A)/512)); A[n+1]}
for(n=0, 10, print1(a(n), ", "))
CROSSREFS
Cf. A324299.
Sequence in context: A246897 A223422 A239191 * A202527 A224557 A292422
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 16 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 15:25 EDT 2024. Contains 373407 sequences. (Running on oeis4.)