login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324611
E.g.f. C(y,x) = cos(x) / sqrt(1 - sin(x)^2 - sin(y)^2).
4
1, 0, 1, 0, 2, 5, 0, 16, 28, 61, 0, 272, 440, 662, 1385, 0, 7936, 12448, 17176, 24568, 50521, 0, 353792, 546560, 727232, 949520, 1326122, 2702765, 0, 22368256, 34259968, 44720896, 56140288, 71350336, 98329108, 199360981, 0, 1903757312, 2900372480, 3742967552, 4600173440, 5610570992, 7020926600, 9596075582, 19391512145, 0, 209865342976, 318605529088, 408133590016, 495154244608, 590470281856, 708137588128, 877465887496, 1192744081648, 2404879675441
OFFSET
0,5
COMMENTS
Row reversal of triangle A324609.
Related identity: (1 + sin(z))/cos(z) = exp( Integral 1/cos(z) dz ).
Related identity: cos(x+y)*cos(x-y) = (1 - sin(x)^2 - sin(y)^2). - Paul D. Hanna, Sep 14 2024
Name changed Sep 14 2024; prior name was: E.g.f. C(y,x) = cosh( Integral C(x,y)*C(y,x) dy ), where C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ).
FORMULA
E.g.f. Cy = C(y,x) and related functions Sy = S(y,x), Cx = C(x,y), and Sx = S(x,y) satisfy the following relations.
(1a) Cx = 1 + Integral Sx * Cx*Cy dx.
(1b) Sx = Integral Cx * Cx*Cy dx.
(1c) Cy = 1 + Integral Sy * Cx*Cy dy.
(1d) Sy = Integral Cy * Cx*Cy dy.
(2a) Cx^2 - Sx^2 = 1.
(2b) Cy^2 - Sy^2 = 1.
(3a) Cx = cosh( Integral Cx*Cy dx ).
(3b) Sx = sinh( Integral Cx*Cy dx ).
(3c) Cy = cosh( Integral Cx*Cy dy ).
(3d) Sy = sinh( Integral Cx*Cy dy ).
(4a) Cx + Sx = exp( Integral Cx*Cy dx ).
(4b) Cy + Sy = exp( Integral Cx*Cy dy ).
(5a) (Cx + Sx)*(Cy + Sy) = (1 + sin(x+y))/cos(x+y).
(5b) (Cx + Sx)*(Cy - Sy) = (1 + sin(x-y))/cos(x-y).
(6a) Cx*Cy + Sx*Sy = 1/cos(x+y).
(6b) Cx*Sy + Sx*Cy = tan(x+y).
(7a) Cx*Cy = ( 1/cos(x+y) + 1/cos(x-y) )/2.
(7b) Sx*Sy = ( 1/cos(x+y) - 1/cos(x-y) )/2.
(7c) Cx*Sy = ( tan(x+y) - tan(x-y) )/2.
(7d) Sx*Cy = ( tan(x+y) + tan(x-y) )/2.
(8a) Cx*Cy = cos(x)*cos(y) / (cos(x+y)*cos(x-y)).
(8b) Sx*Sy = sin(x)*sin(y) / (cos(x+y)*cos(x-y)).
(8c) Cx*Sy = cos(y)*sin(y) / (cos(x+y)*cos(x-y)).
(8d) Sx*Cy = sin(x)*cos(x) / (cos(x+y)*cos(x-y)).
(9a) Cx + Sx = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).
(9b) Cy + Sy = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).
(9c) Cx - Sx = sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).
(9d) Cy - Sy = sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).
Let E(y,x) = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) then
(10a) E(y,x) = C(y,x) + S(y,x) where E(-y,x) = 1/E(y,x),
(10b) C(y,x) = (E(y,x) + E(-y,x))/2,
(10c) S(y,x) = (E(y,x) - E(-y,x))/2.
From Paul D. Hanna, Sep 14 2024: (Start) Explicitly,
(11a) Cx = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11b) Sx = sin(x) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11c) Cy = cos(x) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11d) Sy = sin(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
(End)
PARTICULAR ARGUMENTS.
E.g.f. at x = 0: C(y,x=0) = 1/cos(y).
E.g.f. at x = y: C(y,x=y) = cos(y)/sqrt(cos(2*y)).
FORMULAS INVOLVING TERMS.
T(n,n) = A000364(n) for n >= 0, where A000364 is the secant numbers.
T(n,1) = A000182(n) for n >= 1, where A000182 is the tangent numbers.
EXAMPLE
E.g.f.: C(y,x) = 1 + (1*y^2/2!) + (2*x^2*y^2/(2!*2!) + 5*y^4/4!) + (16*x^4*y^2/(4!*2!) + 28*x^2*y^4/(2!*4!) + 61*y^6/6!) + (272*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 662*x^2*y^6/(2!*6!) + 1385*y^8/8!) + (7936*x^8*y^2/(8!*2!) + 12448*x^6*y^4/(6!*4!) + 17176*x^4*y^6/(4!*6!) + 24568*x^2*y^8/(2!*8!) + 50521*y^10/10!) + (353792*x^10*y^2/(10!*2!) + 546560*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 949520*x^4*y^8/(4!*8!) + 1326122*x^2*y^10/(2!*10!) + 2702765*y^12/12!) + ...
such that C(y,x) = cosh( Integral C(x,y)*C(y,x) dy ).
Explicitly,
C(y,x) = ( sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) + sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) )/2.
This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k)/((2*n-2*k)!*(2*k)!) in e.g.f. C(y,x) begins
1;
0, 1;
0, 2, 5;
0, 16, 28, 61;
0, 272, 440, 662, 1385;
0, 7936, 12448, 17176, 24568, 50521;
0, 353792, 546560, 727232, 949520, 1326122, 2702765;
0, 22368256, 34259968, 44720896, 56140288, 71350336, 98329108, 199360981;
0, 1903757312, 2900372480, 3742967552, 4600173440, 5610570992, 7020926600, 9596075582, 19391512145;
0, 209865342976, 318605529088, 408133590016, 495154244608, 590470281856, 708137588128, 877465887496, 1192744081648, 2404879675441; ...
RELATED SERIES.
C(x,y) = 1 + (1*x^2/2!) + (5*x^4/4! + 2*x^2*y^2/(2!*2!)) + (61*x^6/6! + 28*x^4*y^2/(4!*2!) + 16*x^2*y^4/(2!*4!)) + (1385*x^8/8! + 662*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 272*x^2*y^6/(2!*6!)) + (50521*x^10/10! + 24568*x^8*y^2/(8!*2!) + 17176*x^6*y^4/(6!*4!) + 12448*x^4*y^6/(4!*6!) + 7936*x^2*y^8/(2!*8!)) + (2702765*x^12/12! + 1326122*x^10*y^2/(10!*2!) + 949520*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 546560*x^4*y^8/(4!*8!) + 353792*x^2*y^10/(2!*10!)) + ...
such that C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ).
S(x,y) = x + (2*x^3/3! + 1*x*y^2/2!) + (16*x^5/5! + 8*x^3*y^2/(3!*2!) + 5*x*y^4/4!) + (272*x^7/7! + 136*x^5*y^2/(5!*2!) + 94*x^3*y^4/(3!*4!) + 61*x*y^6/6!) + (7936*x^9/9! + 3968*x^7*y^2/(7!*2!) + 2840*x^5*y^4/(5!*4!) + 2108*x^3*y^6/(3!*6!) + 1385*x*y^8/8!) + (353792*x^11/11! + 176896*x^9*y^2/(9!*2!) + 128704*x^7*y^4/(7!*4!) + 100096*x^5*y^6/(5!*6!) + 76474*x^3*y^8/(3!*8!) + 50521*x*y^10/10!) + (22368256*x^13/13! + 11184128*x^11*y^2/(11!*2!) + 8211200*x^9*y^4/(9!*4!) + 6531968*x^7*y^6/(7!*6!) + 5261120*x^5*y^8/(5!*8!) + 4079408*x^3*y^10/(3!*10!) + 2702765*x*y^12/12!) + ...
such that C(x,y)^2 - S(x,y)^2 = 1.
S(y,x) = y + (1*x^2*y/2! + 2*y^3/3!) + (5*x^4*y/4! + 8*x^2*y^3/(2!*3!) + 16*y^5/5!) + (61*x^6*y/6! + 94*x^4*y^3/(4!*3!) + 136*x^2*y^5/(2!*5!) + 272*y^7/7!) + (1385*x^8*y/8! + 2108*x^6*y^3/(6!*3!) + 2840*x^4*y^5/(4!*5!) + 3968*x^2*y^7/(2!*7!) + 7936*y^9/9!) + (50521*x^10*y/10! + 76474*x^8*y^3/(8!*3!) + 100096*x^6*y^5/(6!*5!) + 128704*x^4*y^7/(4!*7!) + 176896*x^2*y^9/(2!*9!) + 353792*y^11/11!) + (2702765*x^12*y/12! + 4079408*x^10*y^3/(10!*3!) + 5261120*x^8*y^5/(8!*5!) + 6531968*x^6*y^7/(6!*7!) + 8211200*x^4*y^9/(4!*9!) + 11184128*x^2*y^11/(2!*11!) + 22368256*y^13/13!) + ...
such that C(y,x)^2 - S(y,x)^2 = 1.
PROG
(PARI) {T(n, k) = my(Cx = 1 + x*O(x^(2*n)), Cy = 1 + y*O(y^(2*n)));
for(i=1, 2*n,
Cx = cosh(intformal(Cx*Cy, x));
Cy = cosh(intformal(Cx*Cy, y)); );
Sx = sinh(intformal(Cx*Cy, x));
Sy = sinh(intformal(Cx*Cy, y));
(2*n-2*k)!*(2*k)! * polcoeff(polcoeff(Cy, 2*n-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A324612 (S(y,x)), A324609 (C(x,y)), A324610 (S(x,y)).
Cf. A000364 (T(n,n)), A000182 (T(n,1)).
Sequence in context: A214119 A088307 A369629 * A260327 A329251 A062627
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 09 2019
STATUS
approved