login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324612
E.g.f. S(y,x) = sin(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
4
1, 1, 2, 5, 8, 16, 61, 94, 136, 272, 1385, 2108, 2840, 3968, 7936, 50521, 76474, 100096, 128704, 176896, 353792, 2702765, 4079408, 5261120, 6531968, 8211200, 11184128, 22368256, 199360981, 300392854, 384082456, 468079984, 566256256, 702724864, 951878656, 1903757312, 19391512145, 29186948708, 37114459400, 44727839168, 52998922880, 63158486528, 77747624960, 104932671488, 209865342976, 2404879675441, 3617015269234, 4582440724816, 5482201711264, 6414037062016, 7476185292544, 8824137404416, 10803399245824, 14544442556416, 29088885112832
OFFSET
0,3
COMMENTS
Row reversal of triangle A324610.
Related identity: cos(x+y)*cos(x-y) = (1 - sin(x)^2 - sin(y)^2). - Paul D. Hanna, Sep 14 2024
Name changed Sep 14 2024; prior name was: E.g.f. S(y,x) = Integral C(y,x)^2 * C(x,y) dy, where C(y,x)^2 - S(y,x)^2 = 1 and C(x,y) = Integral S(x,y)*C(x,y)*C(y,x) dx.
FORMULA
E.g.f. Sy = S(y,x) and related functions Cy = C(y,x), Sx = S(x,y), and Cx = C(x,y) satisfy the following relations.
(1a) Cx = 1 + Integral Sx * Cx*Cy dx.
(1b) Sx = Integral Cx * Cx*Cy dx.
(1c) Cy = 1 + Integral Sy * Cx*Cy dy.
(1d) Sy = Integral Cy * Cx*Cy dy.
(2a) Cx^2 - Sx^2 = 1.
(2b) Cy^2 - Sy^2 = 1.
(3a) Cx = cosh( Integral Cx*Cy dx ).
(3b) Sx = sinh( Integral Cx*Cy dx ).
(3c) Cy = cosh( Integral Cx*Cy dy ).
(3d) Sy = sinh( Integral Cx*Cy dy ).
(4a) Cx + Sx = exp( Integral Cx*Cy dx ).
(4b) Cy + Sy = exp( Integral Cx*Cy dy ).
(5a) (Cx + Sx)*(Cy + Sy) = (1 + sin(x+y))/cos(x+y).
(5b) (Cx + Sx)*(Cy - Sy) = (1 + sin(x-y))/cos(x-y).
(6a) Cx*Cy + Sx*Sy = 1/cos(x+y).
(6b) Cx*Sy + Sx*Cy = tan(x+y).
(7a) Cx*Cy = ( 1/cos(x+y) + 1/cos(x-y) )/2.
(7b) Sx*Sy = ( 1/cos(x+y) - 1/cos(x-y) )/2.
(7c) Cx*Sy = ( tan(x+y) - tan(x-y) )/2.
(7d) Sx*Cy = ( tan(x+y) + tan(x-y) )/2.
(8a) Cx*Cy = cos(x)*cos(y) / (cos(x+y)*cos(x-y)).
(8b) Sx*Sy = sin(x)*sin(y) / (cos(x+y)*cos(x-y)).
(8c) Cx*Sy = cos(y)*sin(y) / (cos(x+y)*cos(x-y)).
(8d) Sx*Cy = sin(x)*cos(x) / (cos(x+y)*cos(x-y)).
(9a) Cx + Sx = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).
(9b) Cy + Sy = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).
(9c) Cx - Sx = sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).
(9d) Cy - Sy = sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).
Let E(y,x) = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) then
(10a) E(y,x) = C(y,x) + S(y,x) where E(-y,x) = 1/E(y,x),
(10b) C(y,x) = (E(y,x) + E(-y,x))/2,
(10c) S(y,x) = (E(y,x) - E(-y,x))/2.
From Paul D. Hanna, Sep 14 2024: (Start) Explicitly,
(11a) Cx = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11b) Sx = sin(x) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11c) Cy = cos(x) / sqrt(1 - sin(x)^2 - sin(y)^2).
(11d) Sy = sin(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
(End)
PARTICULAR ARGUMENTS.
E.g.f. at x = 0: S(y,x=0) = tan(y).
E.g.f. at x = y: S(y,x=y) = sin(y)/sqrt(cos(2*y)).
FORMULAS INVOLVING TERMS.
T(n,0) = A000364(n) for n >= 0, where A000364 is the secant numbers.
T(n-1,n) = A000182(n) for n >= 1, where A000182 is the tangent numbers.
EXAMPLE
E.g.f.: S(y,x) = y + (1*x^2*y/2! + 2*y^3/3!) + (5*x^4*y/4! + 8*x^2*y^3/(2!*3!) + 16*y^5/5!) + (61*x^6*y/6! + 94*x^4*y^3/(4!*3!) + 136*x^2*y^5/(2!*5!) + 272*y^7/7!) + (1385*x^8*y/8! + 2108*x^6*y^3/(6!*3!) + 2840*x^4*y^5/(4!*5!) + 3968*x^2*y^7/(2!*7!) + 7936*y^9/9!) + (50521*x^10*y/10! + 76474*x^8*y^3/(8!*3!) + 100096*x^6*y^5/(6!*5!) + 128704*x^4*y^7/(4!*7!) + 176896*x^2*y^9/(2!*9!) + 353792*y^11/11!) + (2702765*x^12*y/12! + 4079408*x^10*y^3/(10!*3!) + 5261120*x^8*y^5/(8!*5!) + 6531968*x^6*y^7/(6!*7!) + 8211200*x^4*y^9/(4!*9!) + 11184128*x^2*y^11/(2!*11!) + 22368256*y^13/13!) + ...
such that S(y,x) = Integral C(y,x)^2 * C(x,y) dx.
Explicitly,
S(y,x) = ( sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) - sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) )/2.
This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k+1)/((2*n-2*k)!*(2*k+1)!) in e.g.f. S(y,x) begins
1;
1, 2;
5, 8, 16;
61, 94, 136, 272;
1385, 2108, 2840, 3968, 7936;
50521, 76474, 100096, 128704, 176896, 353792;
2702765, 4079408, 5261120, 6531968, 8211200, 11184128, 22368256;
199360981, 300392854, 384082456, 468079984, 566256256, 702724864, 951878656, 1903757312;
19391512145, 29186948708, 37114459400, 44727839168, 52998922880, 63158486528, 77747624960, 104932671488, 209865342976; ...
RELATED SERIES.
S(x,y) = x + (2*x^3/3! + 1*x*y^2/2!) + (16*x^5/5! + 8*x^3*y^2/(3!*2!) + 5*x*y^4/4!) + (272*x^7/7! + 136*x^5*y^2/(5!*2!) + 94*x^3*y^4/(3!*4!) + 61*x*y^6/6!) + (7936*x^9/9! + 3968*x^7*y^2/(7!*2!) + 2840*x^5*y^4/(5!*4!) + 2108*x^3*y^6/(3!*6!) + 1385*x*y^8/8!) + (353792*x^11/11! + 176896*x^9*y^2/(9!*2!) + 128704*x^7*y^4/(7!*4!) + 100096*x^5*y^6/(5!*6!) + 76474*x^3*y^8/(3!*8!) + 50521*x*y^10/10!) + (22368256*x^13/13! + 11184128*x^11*y^2/(11!*2!) + 8211200*x^9*y^4/(9!*4!) + 6531968*x^7*y^6/(7!*6!) + 5261120*x^5*y^8/(5!*8!) + 4079408*x^3*y^10/(3!*10!) + 2702765*x*y^12/12!) + ...
such that C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ).
C(y,x) = 1 + (1*y^2/2!) + (2*x^2*y^2/(2!*2!) + 5*y^4/4!) + (16*x^4*y^2/(4!*2!) + 28*x^2*y^4/(2!*4!) + 61*y^6/6!) + (272*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 662*x^2*y^6/(2!*6!) + 1385*y^8/8!) + (7936*x^8*y^2/(8!*2!) + 12448*x^6*y^4/(6!*4!) + 17176*x^4*y^6/(4!*6!) + 24568*x^2*y^8/(2!*8!) + 50521*y^10/10!) + (353792*x^10*y^2/(10!*2!) + 546560*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 949520*x^4*y^8/(4!*8!) + 1326122*x^2*y^10/(2!*10!) + 2702765*y^12/12!) + ...
such that C(y,x)^2 - S(y,x)^2 = 1.
C(x,y) = 1 + (1*x^2/2!) + (5*x^4/4! + 2*x^2*y^2/(2!*2!)) + (61*x^6/6! + 28*x^4*y^2/(4!*2!) + 16*x^2*y^4/(2!*4!)) + (1385*x^8/8! + 662*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 272*x^2*y^6/(2!*6!)) + (50521*x^10/10! + 24568*x^8*y^2/(8!*2!) + 17176*x^6*y^4/(6!*4!) + 12448*x^4*y^6/(4!*6!) + 7936*x^2*y^8/(2!*8!)) + (2702765*x^12/12! + 1326122*x^10*y^2/(10!*2!) + 949520*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 546560*x^4*y^8/(4!*8!) + 353792*x^2*y^10/(2!*10!)) + ...
such that C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ).
PROG
(PARI) {T(n, k) = my(Cx = 1 + x*O(x^(2*n)), Cy = 1 + y*O(y^(2*n)));
for(i=1, 2*n,
Cx = cosh(intformal(Cx*Cy, x));
Cy = cosh(intformal(Cx*Cy, y)); );
Sx = sinh(intformal(Cx*Cy, x));
Sy = sinh(intformal(Cx*Cy, y));
(2*n-2*k)!*(2*k+1)! * polcoeff(polcoeff(Sy, 2*n-2*k, x), 2*k+1, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A324611 (C(y,x)), A324610 (S(x,y)), A324609 (C(x,y)).
Cf. A000364 (T(n,0)), A000182 (T(n-1,n)).
Sequence in context: A071085 A240951 A280373 * A243189 A055236 A345430
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 09 2019
STATUS
approved