Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 12 2019 17:15:16
%S 1,1,2,15,148,2565,59046,1825831,70678280,3343670217,188213143690,
%T 12380664239691,937445644041996,80731184378264173,7828455595505947598,
%U 847603141493494555695,101732530008690207859216,13451340197177805355768209,1948644186311260903900163346,307791516722206533702105826963,52778747788778673408416550382100
%N E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n * exp(n^2*x) / A(x)^n.
%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 15*x^3/3! + 148*x^4/4! + 2565*x^5/5! + 59046*x^6/6! + 1825831*x^7/7! + 70678280*x^8/8! + 3343670217*x^9/9! + 188213143690*x^10/10! + ...
%e such that
%e A(x) = 1 + x*exp(x)/A(x) + x^2*exp(2^2*x)/A(x)^2 + x^3*exp(3^2*x)/A(x)^3 + x^4*exp(4^2*x)/A(x)^4 + x^5*exp(5^2*x)/A(x)^5 + x^6*exp(6^2*x)/A(x)^6 + ...
%e Note that a(n) is divisible by n, for n >= 1, where a(n)/n starts
%e [1, 1, 5, 37, 513, 9841, 260833, 8834785, 371518913, 18821314369, ...].
%e RELATED SERIES.
%e log(A(x)) = x + x^2/2! + 11*x^3/3! + 94*x^4/4! + 1849*x^5/5! + 42966*x^6/6! + 1385509*x^7/7! + 54885832*x^8/8! + 2654774721*x^9/9! + 152054810650*x^10/10! + ...
%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
%o A[#A] = polcoeff( sum(m=0,#A, x^m * exp(m^2*x +x*O(x^n)) / Ser(A)^(m+1)), #A-1)); n!*A[n+1]}
%o for(n=0,30, print1(a(n),", "))
%K nonn
%O 0,3
%A _Paul D. Hanna_, Apr 12 2019