OFFSET
0,2
LINKS
Reinhard Zumkeller, Rows n=0..125 of triangle, flattened
Antoine Abram, Florent Hivert, James D. Mitchell, Jean-Christophe Novelli, and Maria Tsalakou, Power Quotients of Plactic-like Monoids, arXiv:2406.16387 [math.CO], 2024. See p. 5.
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
Steve Butler, R. Graham, and C. H. Yan, Parking distributions on trees, European Journal of Combinatorics 65 (2017), 168-185.
Yue Cai and Catherine Yan, Counting with Borel's triangle, Texas A&M University.
Yue Cai and Catherine Yan, Counting with Borel's triangle, arXiv:1804.01597 [math.CO], 2018.
G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
C. A. Francisco, J. Mermin, and J. Schweig, Catalan numbers, binary trees, and pointed pseudotriangulations, preprint 2013; European Journal of Combinatorics, Volume 45, April 2015, pp. 85-96.
Lord C. Kavi and Michael W. Newman, Counting closed walks in infinite regular trees using Catalan and Borel's triangles, arXiv:2212.08795 [math.CO], 2022.
A. Lakshminarayan, Z. Puchala, and K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169 [quant-ph], 2014.
Jeffrey B. Remmel, Consecutive Up-down Patterns in Up-down Permutations, Electron. J. Combin., 21 (2014), #P3.2. See pp. 21-22. - N. J. A. Sloane, Jul 12 2014
FORMULA
G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018
EXAMPLE
Triangle begins:
1,
2, 1,
5, 6, 2,
14, 28, 20, 5,
42, 120, 135, 70, 14,
132, 495, 770, 616, 252, 42,
429, 2002, 4004, 4368, 2730, 924, 132,
1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
...
MAPLE
T := (n, k) -> 2*binomial(2*n+1, n)*(n-k+1)*binomial(n+1, k)/((k+n+1)*(k+n+2)):
seq(seq(T(n, k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
MATHEMATICA
T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
PROG
(Haskell)
a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
a234950_row n = map (a234950 n) [0..n]
a234950_tabl = map a234950_row [0..]
-- Reinhard Zumkeller, Jan 12 2014
(PARI) T(n, k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print(); ); \\ Michel Marcus, Sep 06 2015
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 11 2014
STATUS
approved