login
A234950
Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.
6
1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
OFFSET
0,2
LINKS
Antoine Abram, Florent Hivert, James D. Mitchell, Jean-Christophe Novelli, and Maria Tsalakou, Power Quotients of Plactic-like Monoids, arXiv:2406.16387 [math.CO], 2024. See p. 5.
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
Steve Butler, R. Graham, and C. H. Yan, Parking distributions on trees, European Journal of Combinatorics 65 (2017), 168-185.
Yue Cai and Catherine Yan, Counting with Borel's triangle, Texas A&M University.
Yue Cai and Catherine Yan, Counting with Borel's triangle, arXiv:1804.01597 [math.CO], 2018.
G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
C. A. Francisco, J. Mermin, and J. Schweig, Catalan numbers, binary trees, and pointed pseudotriangulations, preprint 2013; European Journal of Combinatorics, Volume 45, April 2015, pp. 85-96.
Lord C. Kavi and Michael W. Newman, Counting closed walks in infinite regular trees using Catalan and Borel's triangles, arXiv:2212.08795 [math.CO], 2022.
A. Lakshminarayan, Z. Puchala, and K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169 [quant-ph], 2014.
Jeffrey B. Remmel, Consecutive Up-down Patterns in Up-down Permutations, Electron. J. Combin., 21 (2014), #P3.2. See pp. 21-22. - N. J. A. Sloane, Jul 12 2014
FORMULA
G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018
EXAMPLE
Triangle begins:
1,
2, 1,
5, 6, 2,
14, 28, 20, 5,
42, 120, 135, 70, 14,
132, 495, 770, 616, 252, 42,
429, 2002, 4004, 4368, 2730, 924, 132,
1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
...
MAPLE
T := (n, k) -> 2*binomial(2*n+1, n)*(n-k+1)*binomial(n+1, k)/((k+n+1)*(k+n+2)):
seq(seq(T(n, k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
MATHEMATICA
T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
PROG
(Haskell)
a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
a234950_row n = map (a234950 n) [0..n]
a234950_tabl = map a234950_row [0..]
-- Reinhard Zumkeller, Jan 12 2014
(PARI) T(n, k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print(); ); \\ Michel Marcus, Sep 06 2015
CROSSREFS
A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.
Sequence in context: A185384 A274728 A062991 * A275228 A118984 A073474
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 11 2014
STATUS
approved