login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244887
Third column of triangle in A234950.
2
2, 20, 135, 770, 4004, 19656, 92820, 426360, 1918620, 8498776, 37182145, 161056350, 691945800, 2952675600, 12527780760, 52895074320, 222399744300, 931689977400, 3890668331550, 16201562020644, 67298796085752, 278927990831600, 1153747598439800, 4763749454427600, 19637233862140440
OFFSET
2,1
COMMENTS
Remmel (2014) asks for a formula.
LINKS
Jeffrey B. Remmel, Consecutive Up-down Patterns in Up-down Permutations, Electron. J. Combin., 21 (2014), #P3.2.
FORMULA
a(n) = A234950(n, 2).
MATHEMATICA
Table[Sum[Binomial[s, 2] Binomial[n+s, n] (n - s + 1) / (n + 1), {s, 2, n}], {n, 2, 15}] (* Vincenzo Librandi, Apr 06 2018 *)
PROG
(PARI) a(n) = sum(s=2, n, binomial(s, 2)*binomial(n+s, n)*(n-s+1)/(n+1)); \\ Michel Marcus, Apr 06 2018
CROSSREFS
Cf. A234950.
Sequence in context: A373614 A094254 A093647 * A279112 A229454 A003490
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 12 2014
EXTENSIONS
More terms from Michel Marcus, Apr 06 2018
STATUS
approved