login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n, k)*|Lah(n, k)|. Binomial convolution of the unsigned Lah numbers A271703.
0

%I #11 Apr 27 2024 04:50:16

%S 1,1,5,37,361,4301,60001,954325,16984577,333572041,7151967181,

%T 165971975621,4139744524345,110333560295557,3126749660583641,

%U 93819198847833061,2969676820062708481,98843743790129998865,3449675368718647501717,125921086600579132143781,4796519722094585691925961

%N a(n) = Sum_{k=0..n} binomial(n, k)*|Lah(n, k)|. Binomial convolution of the unsigned Lah numbers A271703.

%F a(n) = n * n! * hypergeom([1 - n, 1 - n], [2, 2], 1] for n >= 1.

%F D-finite with recurrence +16*n*a(n) +6*(-8*n^2+5*n-1)*a(n-1) +(48*n^3-266*n^2+407*n-167)*a(n-2) +(-16*n^4+106*n^3-219*n^2+108*n+93)*a(n-3) +(n-4)*(2*n^3-13*n^2+16*n+25)*a(n-4) -(n-5)*(n-4)^3*a(n-5)=0. - _R. J. Mathar_, Jul 27 2022

%F a(n) ~ n^(n - 1/2) / (sqrt(6*Pi) * exp(n - 3*n^(2/3) + n^(1/3) - 1/3)) * (1 + 31/(54*n^(1/3))). - _Vaclav Kotesovec_, Apr 27 2024

%p aList := proc(len) local lah;

%p lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!):

%p seq(add(binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end:

%p lprint(aList(22));

%t a[n_] := n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, 1]; a[0] := 1;

%t Table[a[n], {n, 0, 20}]

%Y Cf. A271703, A111596, A344050.

%K nonn

%O 0,3

%A _Peter Luschny_, May 10 2021