login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238300
Fourth convolution of A107841.
2
1, 8, 64, 520, 4304, 36232, 309504, 2677128, 23405520, 206522888, 1836913216, 16452907016, 148274884688, 1343569891720, 12233903203328, 111883174439304, 1027244073375312, 9465236716896264, 87498251217286720, 811252609543727624, 7542152541765899728, 70294794046928531848
OFFSET
0,2
FORMULA
G.f.: (G.f. of A107841)^4.
Recurrence: (n+4)*a(n) = (8-n)*a(n-8) + 4*(4*n-26)*a(n-7) + 64*(5-n)*a(n-6) + 8*(2*n-7)*a(n-5) + 194*(n-2)*a(n-4) + 8*(2*n-1)*a(n-3) - 64*(n+1)*a(n-2) + 8*(2*n+5)*a(n-1), n>=8.
Recurrence (of order 2): n*(n+4)*(2*n+1)*a(n) = 20*n*(n+1)*(n+2)*a(n-1) - (n-2)*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ 2*sqrt(35280+14403*sqrt(6)) * (5+2*sqrt(6))^n / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-10*x+x^2])/(6*x))^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 27 2014 *)
CROSSREFS
Sequence in context: A074116 A245852 A033144 * A344271 A144317 A344054
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Feb 25 2014
STATUS
approved