Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 06 2022 08:42:03
%S 0,1,8,51,304,1770,10224,58947,340064,1964862,11374000,65966318,
%T 383289504,2230877428,13005037920,75923905635,443837331648,
%U 2597761611894,15221636471088,89283411393018,524194439193120,3080311943546124,18115458433730592,106618075368243534
%N a(n) = 2^n * n! * [x^n](exp(2*x) * BesselI(1, x)).
%F a(n) = [x^n] (1/(2*x))*(1 - (4*x - 1)/(sqrt((6*x - 1)*(2*x - 1)))).
%F D-finite with recurrence a(n) = 4*(3*(n^2 - n)*a(n - 2) - (2*n^2 - n)*a(n - 1))/(1 - n^2) for n >= 2.
%F The INVERT transform of A052177.
%F a(n) ~ 2^(n - 1/2) * 3^(n + 1/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, May 12 2021
%p gf := exp(2*x)*BesselI(1, x):
%p ser := series(gf, x, 32): seq(2^n*n!*coeff(ser, x, n), n = 0..23);
%p # Or:
%p gf := (1/(2*x))*(1 - (4*x - 1)/(sqrt((6*x - 1)*(2*x - 1)))):
%p ser := series(gf, x, 32): seq(coeff(ser, x, n), n = 0..23);
%t RecurrenceTable[{(1 - n^2) a[n] == 4 (3 (n^2 - n) a[n - 2] - (2 n^2 - n) a[n - 1]), a[0] == 0, a[1] == 1}, a, {n, 0, 23}]
%Y Cf. A052177.
%K nonn,easy
%O 0,3
%A _Peter Luschny_, May 12 2021