login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082134
Expansion of e.g.f. x*exp(3*x)*cosh(x).
9
0, 1, 6, 30, 144, 680, 3168, 14560, 66048, 296064, 1313280, 5772800, 25178112, 109078528, 469819392, 2013388800, 8590196736, 36507779072, 154620002304, 652837519360, 2748784312320, 11544883101696, 48378534690816
OFFSET
0,3
COMMENTS
Binomial transform of A082133. 3rd binomial transform of (0,1,0,3,0,5,0,7,...)
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then remove (y,x) from B when (x,y) is in B and x <> y and call this R35. Then a(n) = the sum of the size of the intersection of x and y for every (x,y) of R35. - Ross La Haye, Dec 30 2007; edited Jan 05 2013
A133224 is the analogous sequence if "Intersection" is replaced by "Union" and A002697 is the analogous sequence if "Intersection" is replaced by "Symmetric difference". Here, X Intersection Y = Y Intersection X is considered as the same set [Relation (37): T_Q(n) in document of Ross La Haye in reference]. If we want to consider that X Intersection Y and Y Intersection X are two distinct formula for describing the same set, see A002697. - Bernard Schott, Jan 19 2013
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
FORMULA
a(n) = n*(2^(n-1) + 4^(n-1))/2.
E.g.f.: x*exp(3*x)*cosh(x).
Conjecture: (n+28)*a(n) + (n-282)*a(n-1) + 2*(-17*n+423)*a(n-2) + 8*(7*n-94)*a(n-3) = 0. - R. J. Mathar, Nov 29 2012
G.f.: x*(10*x^2-6*x+1) / ((2*x-1)^2*(4*x-1)^2). - Colin Barker, Dec 10 2012
MAPLE
a:= n -> n*binomial(2^(n-1) +1, 2); seq(a(n), n=0..25); # G. C. Greubel, Apr 16 2020
MATHEMATICA
Table[n(2^(n-1) +4^(n-1))/2, {n, 0, 22}] (* Michael De Vlieger, Nov 29 2015 *)
With[{nmax = 25}, CoefficientList[Series[x*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Feb 05 2018 *)
PROG
(PARI) a(n)=n*(2^n--+4^n)/2 \\ Charles R Greathouse IV, Jan 14 2013
(Magma) [n*2^(n-2)*(1+2^(n-1)): n in [0..25]]; // G. C. Greubel, Feb 05 2018
(Sage) [n*binomial(2^(n-1)+1, 2) for n in (0..25)] # G. C. Greubel, Apr 16 2020
CROSSREFS
Cf. A057711 (x*exp(x)*cosh(x)), A082133 (x*exp(2*x)*cosh(x)).
Cf. A082135 (x*exp(4*x)*cosh(x)), A082136 (x*exp(5*x)*cosh(x)).
Sequence in context: A026749 A003279 A221397 * A030192 A026376 A026899
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved