Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Sep 08 2022 08:45:09
%S 0,1,6,30,144,680,3168,14560,66048,296064,1313280,5772800,25178112,
%T 109078528,469819392,2013388800,8590196736,36507779072,154620002304,
%U 652837519360,2748784312320,11544883101696,48378534690816
%N Expansion of e.g.f. x*exp(3*x)*cosh(x).
%C Binomial transform of A082133. 3rd binomial transform of (0,1,0,3,0,5,0,7,...)
%C Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then remove (y,x) from B when (x,y) is in B and x <> y and call this R35. Then a(n) = the sum of the size of the intersection of x and y for every (x,y) of R35. - _Ross La Haye_, Dec 30 2007; edited Jan 05 2013
%C A133224 is the analogous sequence if "Intersection" is replaced by "Union" and A002697 is the analogous sequence if "Intersection" is replaced by "Symmetric difference". Here, X Intersection Y = Y Intersection X is considered as the same set [Relation (37): T_Q(n) in document of Ross La Haye in reference]. If we want to consider that X Intersection Y and Y Intersection X are two distinct formula for describing the same set, see A002697. - _Bernard Schott_, Jan 19 2013
%H G. C. Greubel, <a href="/A082134/b082134.txt">Table of n, a(n) for n = 0..1000</a>
%H Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,-52,96,-64).
%F a(n) = n*(2^(n-1) + 4^(n-1))/2.
%F E.g.f.: x*exp(3*x)*cosh(x).
%F Conjecture: (n+28)*a(n) + (n-282)*a(n-1) + 2*(-17*n+423)*a(n-2) + 8*(7*n-94)*a(n-3) = 0. - _R. J. Mathar_, Nov 29 2012
%F G.f.: x*(10*x^2-6*x+1) / ((2*x-1)^2*(4*x-1)^2). - _Colin Barker_, Dec 10 2012
%p a:= n -> n*binomial(2^(n-1) +1, 2); seq(a(n), n=0..25); # _G. C. Greubel_, Apr 16 2020
%t Table[n(2^(n-1) +4^(n-1))/2, {n, 0, 22}] (* _Michael De Vlieger_, Nov 29 2015 *)
%t With[{nmax = 25}, CoefficientList[Series[x*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Feb 05 2018 *)
%o (PARI) a(n)=n*(2^n--+4^n)/2 \\ _Charles R Greathouse IV_, Jan 14 2013
%o (Magma) [n*2^(n-2)*(1+2^(n-1)): n in [0..25]]; // _G. C. Greubel_, Feb 05 2018
%o (Sage) [n*binomial(2^(n-1)+1, 2) for n in (0..25)] # _G. C. Greubel_, Apr 16 2020
%Y Cf. A057711 (x*exp(x)*cosh(x)), A082133 (x*exp(2*x)*cosh(x)).
%Y Cf. A082135 (x*exp(4*x)*cosh(x)), A082136 (x*exp(5*x)*cosh(x)).
%Y Cf. A002697, A133224.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Apr 06 2003