login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082138
A transform of C(n,3).
10
1, 4, 20, 80, 280, 896, 2688, 7680, 21120, 56320, 146432, 372736, 931840, 2293760, 5570560, 13369344, 31752192, 74711040, 174325760, 403701760, 928514048, 2122317824, 4823449600, 10905190400, 24536678400, 54962159616, 122607894528
OFFSET
0,2
COMMENTS
Fourth row of number array A082137. C(n,3) has e.g.f. (x^3/3!)exp(x). The transform averages the binomial and inverse binomial transforms.
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(n+3, n).
a(n) = Sum_{j=0..n} C(n+3, j+3)*C(j+3, 3)*(1 + (-1)^j)/2.
G.f.: (1 - 4*x + 12*x^2 - 16*x^3 + 8*x^4)/(1-2*x)^4.
E.g.f.: (x^3/3!)*exp(x)*cosh(x) (preceded by 3 zeros).
a(n) = ceiling(binomial(n+3,3)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*log(2) - 7.
Sum_{n>=0} (-1)^n/a(n) = 108*log(3/2) - 43. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*C(3,0) = 2*(1/2) = 1 (using 0^0=1).
MAPLE
[seq (ceil(binomial(n+3, 3)*2^(n-1)), n=0..30)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Join[{1}, LinearRecurrence[{8, -24, 32, -16}, {4, 20, 80, 280}, 30]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [(Ceiling(Binomial(n+3, 3)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) my(x='x+O('x^30)); Vec((1-4*x+12*x^2-16*x^3 + 8*x^4)/(1-2*x)^4) \\ G. C. Greubel, Jul 23 2019
(Sage) ((1-4*x+12*x^2-16*x^3+8*x^4)/(1-2*x)^4).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
(GAP) a:=[4, 20, 80, 280];; for n in [5..30] do a[n]:=8*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; Concatenation([1], a);
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved