OFFSET
0,2
COMMENTS
Fourth row of number array A082137. C(n,3) has e.g.f. (x^3/3!)exp(x). The transform averages the binomial and inverse binomial transforms.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(n+3, n).
a(n) = Sum_{j=0..n} C(n+3, j+3)*C(j+3, 3)*(1 + (-1)^j)/2.
G.f.: (1 - 4*x + 12*x^2 - 16*x^3 + 8*x^4)/(1-2*x)^4.
E.g.f.: (x^3/3!)*exp(x)*cosh(x) (preceded by 3 zeros).
a(n) = ceiling(binomial(n+3,3)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*log(2) - 7.
Sum_{n>=0} (-1)^n/a(n) = 108*log(3/2) - 43. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*C(3,0) = 2*(1/2) = 1 (using 0^0=1).
MAPLE
[seq (ceil(binomial(n+3, 3)*2^(n-1)), n=0..30)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Join[{1}, LinearRecurrence[{8, -24, 32, -16}, {4, 20, 80, 280}, 30]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [(Ceiling(Binomial(n+3, 3)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) my(x='x+O('x^30)); Vec((1-4*x+12*x^2-16*x^3 + 8*x^4)/(1-2*x)^4) \\ G. C. Greubel, Jul 23 2019
(Sage) ((1-4*x+12*x^2-16*x^3+8*x^4)/(1-2*x)^4).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
(GAP) a:=[4, 20, 80, 280];; for n in [5..30] do a[n]:=8*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; Concatenation([1], a);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved