login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255050
G.f.: Product_{j>=1} 1/(1-x^j)^binomial(j+3,3).
8
1, 4, 20, 80, 305, 1072, 3622, 11676, 36450, 110240, 324936, 935076, 2635338, 7285560, 19795370, 52930360, 139462956, 362471020, 930186694, 2358867240, 5915606398, 14680528648, 36073675792, 87816701332, 211891552280, 506981067168, 1203337174120, 2834401172172
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^C(j+3,3).
a(n) ~ Zeta(5)^(829/3600) * exp(11/72 - Zeta(3)/(4*Pi^2) + Zeta'(-3)/6 - 121*Zeta(3)^2 / (360*Zeta(5)) - Pi^6/(1800*Zeta(5)) + 11*Pi^8*Zeta(3) / (108000*Zeta(5)^2) - Pi^16/(194400000*Zeta(5)^3) + Pi^2 * n^(1/5)/ (6*2^(2/5) * Zeta(5)^(1/5)) - 11*Pi^4 * Zeta(3) * n^(1/5) / (900*2^(2/5)*Zeta(5)^(6/5)) + Pi^12 * n^(1/5) / (1350000 * 2^(2/5) * Zeta(5)^(11/5)) + 11*Zeta(3) * n^(2/5) / (6*2^(4/5) * Zeta(5)^(2/5)) - Pi^8 * n^(2/5) / (9000 * 2^(4/5) * Zeta(5)^(7/5)) + Pi^4 * n^(3/5) / (90 * 2^(1/5) * Zeta(5)^(3/5)) + 5 * Zeta(5)^(1/5) * n^(4/5) / 2^(8/5)) / (A^(11/6) * 2^(971/1800) * 5^(1/2) * Pi * n^(2629/3600)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant, Zeta(3) = A002117 = 1.202056903..., Zeta(5) = A013663 = 1.036927755... and Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4 = 0.0053785763577743... .
MAPLE
with(numtheory):
a:= proc(n) option remember; local d, j; `if`(n=0, 1,
add(add(d*binomial(d+3, 3), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^j)^Binomial[j+3, 3], {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Column k=4 of A075196.
Sequence in context: A258627 A082138 A074358 * A371408 A292540 A320934
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 08 2015
STATUS
approved