OFFSET
1,2
COMMENTS
For k>=1, n->infinity is log(T(n,k)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)). - Vaclav Kotesovec, Mar 08 2015
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - Alois P. Heinz, Mar 10 2015
EXAMPLE
1, 2, 3, 4, 5, ...
2, 6, 12, 20, 30, ...
3, 14, 38, 80, 145, ...
5, 33, 117, 305, 660, ...
7, 70, 330, 1072, 2777, ...
MAPLE
with(numtheory):
A:= proc(n, k) option remember; local d, j;
`if`(n=0, 1, add(add(d*binomial(d+k-1, k-1),
d=divisors(j)) *A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 26 2012
MATHEMATICA
Transpose[Table[nn=6; p=Product[1/(1- x^i)^Binomial[i+n, n], {i, 1, nn}]; Drop[CoefficientList[Series[p, {x, 0, nn}], x], 1], {n, 0, nn}]]//Grid (* Geoffrey Critzer, Sep 27 2012 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Sep 07 2002
STATUS
approved