OFFSET
1,2
COMMENTS
FORMULA
First and last term in row n: n.
Column 2: n*(n-1).
Column 3: A016061.
Column 4: A112742.
Row sums: -1+(even-indexed Fibonacci numbers).
Periodic alternating row sums: 1,0,0,1,0,0,1,0,0,...
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{j=1..n-k+1} binomial(2*j+k-2,k-1). - Detlef Meya, Dec 05 2023
EXAMPLE
First five rows:
1
2...2
3...6....3
4...12...13...4
5...20...34...24...5
First three polynomials v(n,x): 1, 2 + 2x , 3 + 6x + 3x^2.
MAPLE
T := (n, k) -> -binomial(2*n-k+2, k+1)*hypergeom([2*n-k+3, 1], [k+2], 2):
seq(seq(simplify(T(n, k)), k=1..n), n=1..10); # Peter Luschny, Oct 31 2019
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210219 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210220 *)
(* alternate program *)
T[n_, k_]:=Sum[Binomial[2*j+k-2, k-1], {j, 1, n-k+1}]; Flatten[Table[T[n, k], {n, 1, 11}, {k, 1, n}]] (* Detlef Meya, Dec 05 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 19 2012
EXTENSIONS
New name from Peter Luschny, Oct 31 2019
STATUS
approved