|
|
A210220
|
|
T(n, k) = -binomial(2*n-k+2, k+1)*hypergeom([2*n-k+3, 1], [k+2], 2). Triangle read by rows, T(n, k) for 1 <= k <= n.
|
|
4
|
|
|
1, 2, 2, 3, 6, 3, 4, 12, 13, 4, 5, 20, 34, 24, 5, 6, 30, 70, 80, 40, 6, 7, 42, 125, 200, 166, 62, 7, 8, 56, 203, 420, 496, 314, 91, 8, 9, 72, 308, 784, 1211, 1106, 553, 128, 9, 10, 90, 444, 1344, 2576, 3108, 2269, 920, 174, 10, 11, 110, 615, 2160, 4956, 7476, 7274, 4352, 1461, 230, 11
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Previous name: Triangle of coefficients of polynomials v(n,x) jointly generated with A210217.
For a discussion and guide to related arrays, see A208510.
|
|
LINKS
|
|
|
FORMULA
|
First and last term in row n: n.
Column 2: n*(n-1).
Row sums: -1+(even-indexed Fibonacci numbers).
Periodic alternating row sums: 1,0,0,1,0,0,1,0,0,...
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
|
|
EXAMPLE
|
First five rows:
1
2...2
3...6....3
4...12...13...4
5...20...34...24...5
First three polynomials v(n,x): 1, 2 + 2x , 3 + 6x + 3x^2.
|
|
MAPLE
|
T := (n, k) -> -binomial(2*n-k+2, k+1)*hypergeom([2*n-k+3, 1], [k+2], 2):
seq(seq(simplify(T(n, k)), k=1..n), n=1..10); # Peter Luschny, Oct 31 2019
|
|
MATHEMATICA
|
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|