The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329655 Square array read by antidiagonals: T(n,k) is the number of relations between set A with n elements and set B with k elements that are both right unique and left unique. 1
 1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 33, 20, 5, 6, 30, 72, 72, 30, 6, 7, 42, 135, 208, 135, 42, 7, 8, 56, 228, 500, 500, 228, 56, 8, 9, 72, 357, 1044, 1545, 1044, 357, 72, 9, 10, 90, 528, 1960, 4050, 4050, 1960, 528, 90, 10, 11, 110, 747, 3392, 9275, 13326, 9275, 3392, 747, 110, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. A relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2. LINKS Table of n, a(n) for n=1..66. Roy S. Freedman, Some New Results on Binary Relations, arXiv:1501.01914 [cs.DM], 2015. FORMULA T(n,k) = Sum_{j=1..k} binomial(n,j)*binomial(k,j)*j!. T(n,k) = A088699(n,k)-1. EXAMPLE The symmetric array T(n,k) begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2, 6, 12, 20, 30, 42, 56, 72, 90, ... 3, 12, 33, 72, 135, 228, 357, 528, 747, ... 4, 20, 72, 208, 500, 1044, 1960, 3392, 5508, ... 5, 30, 135, 500, 1545, 4050, 9275, 19080, 36045, ... 6, 42, 228, 1044, 4050, 13326, 37632, 93288, 207774, ... 7, 56, 357, 1960, 9275, 37632, 130921, 394352, 1047375, ... 8, 72, 528, 3392, 19080, 93288, 394352, 1441728, 4596552, ... 9, 90, 747, 5508, 36045, 207774, 1047375, 4596552, 17572113, ... MAPLE T:= (n, k)-> value(Sum(binomial(n, j)*binomial(k, j)*j!, j=1..k)): seq(seq(T(n, 1+d-n), n=1..d), d=1..12); MATHEMATICA T[n_, k_] := Sum[Binomial[n, j] * Binomial[k, j] * j!, {j, 1, k}]; Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *) PROG (MuPAD) T:=(n, k)->_plus (binomial(n, j)*binomial(k, j)* j! \$ j=1..k): CROSSREFS The diagonal T(n,n) is A097662. T(1,k)=A000027; T(2,k)=A002378; T(3,k)=A054602. Sequence in context: A125102 A003506 A047662 * A183474 A294034 A210220 Adjacent sequences: A329652 A329653 A329654 * A329656 A329657 A329658 KEYWORD nonn,tabl,easy AUTHOR Roy S. Freedman, Nov 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 15:49 EDT 2023. Contains 363148 sequences. (Running on oeis4.)