login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270243
Number of partitions of n unlabeled objects of 10 colors.
2
1, 10, 110, 990, 8195, 62854, 455675, 3147210, 20874205, 133650330, 829656124, 5010237850, 29516429335, 170025614980, 959521900370, 5313793679524, 28919055049170, 154857622067610, 816814457097155, 4247904244224630, 21800095116980345, 110485969920692960
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^C(j+9,9).
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*binomial(d+9, 9), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30);
CROSSREFS
Column k=10 of A075196.
Sequence in context: A249845 A180290 A110251 * A276387 A289890 A289093
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 13 2016
STATUS
approved