Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 13 2016 17:59:55
%S 1,10,110,990,8195,62854,455675,3147210,20874205,133650330,829656124,
%T 5010237850,29516429335,170025614980,959521900370,5313793679524,
%U 28919055049170,154857622067610,816814457097155,4247904244224630,21800095116980345,110485969920692960
%N Number of partitions of n unlabeled objects of 10 colors.
%H Alois P. Heinz, <a href="/A270243/b270243.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Product_{j>=1} 1/(1-x^j)^C(j+9,9).
%p with(numtheory):
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(
%p d*binomial(d+9, 9), d=divisors(j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30);
%Y Column k=10 of A075196.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Mar 13 2016