OFFSET
0,2
COMMENTS
Partial sums of A005475.
Suppose we extend the triangle in A215631 to a symmetric array by reflection about the main diagonal. The array is defined by m(i,j) = i^2 + i*j + j^2: 3, 7, 13, ...; 7, 12, 19, ...; 13, 19, 27, .... Then a(n) is the sum of the n-th antidiagonal. Examples: 3, 7 + 7, 13 + 12 + 13, 21 + 19 + 19 + 21, etc. - J. M. Bergot, Jun 25 2013
Binomial transform of [0,3,8,5,0,0,0,...]. - Alois P. Heinz, Mar 10 2015
LINKS
Jinyuan Wang, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
From R. J. Mathar, Jun 27 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
G.f.: x*(3+2*x)/(1-x)^4. (End)
a(n) = A035005(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = Sum_{i=0..n} i*(n + 1 + i). - Bruno Berselli, Mar 17 2016
E.g.f.: x*(18 + 24*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Apr 01 2021
EXAMPLE
For n=4, a(4) = 0*(5+0) + 1*(5+1) + 2*(5+2) + 3*(5+3) + 4*(5+4) = 80. - Bruno Berselli, Mar 17 2016
MAPLE
MATHEMATICA
Table[(n(n+1)(5n+4))/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 3, 14, 38}, 50] (* Harvey P. Dale, May 04 2013 *)
PROG
(PARI) a(n)=n*(n+1)*(5*n+4)/6 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [n*(n+1)*(5*n+4)/6: n in [0..40]]; // G. C. Greubel, Apr 01 2021
(Sage) [n*(n+1)*(5*n+4)/6 for n in (0..40)] # G. C. Greubel, Apr 01 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jun 25 2009
EXTENSIONS
Definition rephrased by R. J. Mathar, Jun 27 2009
STATUS
approved