login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162147
a(n) = n*(n+1)*(5*n + 4)/6.
8
0, 3, 14, 38, 80, 145, 238, 364, 528, 735, 990, 1298, 1664, 2093, 2590, 3160, 3808, 4539, 5358, 6270, 7280, 8393, 9614, 10948, 12400, 13975, 15678, 17514, 19488, 21605, 23870, 26288, 28864, 31603, 34510, 37590, 40848, 44289, 47918, 51740, 55760
OFFSET
0,2
COMMENTS
Partial sums of A005475.
Suppose we extend the triangle in A215631 to a symmetric array by reflection about the main diagonal. The array is defined by m(i,j) = i^2 + i*j + j^2: 3, 7, 13, ...; 7, 12, 19, ...; 13, 19, 27, .... Then a(n) is the sum of the n-th antidiagonal. Examples: 3, 7 + 7, 13 + 12 + 13, 21 + 19 + 19 + 21, etc. - J. M. Bergot, Jun 25 2013
Binomial transform of [0,3,8,5,0,0,0,...]. - Alois P. Heinz, Mar 10 2015
FORMULA
From R. J. Mathar, Jun 27 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = A033994(n) + A000217(n).
G.f.: x*(3+2*x)/(1-x)^4. (End)
a(n) = A035005(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = Sum_{i=0..n} i*(n + 1 + i). - Bruno Berselli, Mar 17 2016
E.g.f.: x*(18 + 24*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Apr 01 2021
EXAMPLE
For n=4, a(4) = 0*(5+0) + 1*(5+1) + 2*(5+2) + 3*(5+3) + 4*(5+4) = 80. - Bruno Berselli, Mar 17 2016
MAPLE
A162147:= n-> n*(n+1)*(5*n+4)/6; seq(A162147(n), n=0..40); # G. C. Greubel, Apr 01 2021
MATHEMATICA
Table[(n(n+1)(5n+4))/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 3, 14, 38}, 50] (* Harvey P. Dale, May 04 2013 *)
PROG
(PARI) a(n)=n*(n+1)*(5*n+4)/6 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [n*(n+1)*(5*n+4)/6: n in [0..40]]; // G. C. Greubel, Apr 01 2021
(Sage) [n*(n+1)*(5*n+4)/6 for n in (0..40)] # G. C. Greubel, Apr 01 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition rephrased by R. J. Mathar, Jun 27 2009
STATUS
approved