login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162148
a(n) = n*(n+1)*(5*n+7)/6.
7
0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
OFFSET
0,2
COMMENTS
Partial sums of A147875.
Equals the fourth right hand column of A175136 for n>=1. - Johannes W. Meijer, May 06 2011
a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - Clark Kimberling, Jun 14 2012
FORMULA
a(n) = A162147(n) + A000217(n).
From Johannes W. Meijer, May 06 2011: (Start)
G.f.: x*(4+x)/(1-x)^4.
a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - Harvey P. Dale, May 20 2014
E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021
MAPLE
A162148:= n-> n*(n+1)*(5*n+7)/6; seq(A162148(n), n=0..50); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Table[(n(n+1)(5n+7))/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 17, 44}, 50] (* Harvey P. Dale, May 20 2014 *)
PROG
(Magma) [n*(n+1)*(5*n+7)/6: n in [0..50]]; // Vincenzo Librandi, May 07 2011
(PARI) a(n)=n*(n+1)*(5*n+7)/6 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(n+1)*(5*n+7)/6 for n in (0..50)] # G. C. Greubel, Mar 31 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition rephrased by R. J. Mathar, Jun 27 2009
STATUS
approved