login
A190048
Expansion of (8+6*x)/(1-x)^5
4
8, 46, 150, 370, 770, 1428, 2436, 3900, 5940, 8690, 12298, 16926, 22750, 29960, 38760, 49368, 62016, 76950, 94430, 114730, 138138, 164956, 195500, 230100, 269100, 312858, 361746, 416150, 476470, 543120, 616528, 697136, 785400, 881790, 986790, 1100898
OFFSET
0,1
COMMENTS
Equals the fifth right hand column of A175136.
FORMULA
G.f.: (8+6*x)/(1-x)^5.
a(n) = 8*binomial(n+4,4) + 6*binomial(n+3,4).
a(n) = A091894(4,0)*binomial(n+4,4) + A091894(4,1)*binomial(n+3,4).
a(n) = (7*n^4 +58*n^3 +173*n^2 +218*n +96)/12.
MAPLE
A190048 := proc(n) option remember; a(n):=(7*n^4+58*n^3+173*n^2+218*n+96)/12 end: seq(A190048(n), n=0..35);
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {8, 46, 150, 370, 770}, 30] (* or *) CoefficientList[Series[(8+6*x)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
PROG
(Magma) [(7*n^4+58*n^3+173*n^2+218*n+96)/12: n in [0..50]]; // Vincenzo Librandi, May 07 2011
(PARI) x='x+O('x^30); Vec((8+6*x)/(1-x)^5) \\ G. C. Greubel, Jan 10 2018
(PARI) for(n=0, 50, print1((7*n^4 +58*n^3 +173*n^2 +218*n +96)/12, ", ")) \\ G. C. Greubel, Jan 10 2018
CROSSREFS
Related to A000332 and A091894.
Sequence in context: A340975 A213132 A137390 * A034469 A212673 A183392
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, May 06 2011
STATUS
approved