Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:45:46
%S 0,4,17,44,90,160,259,392,564,780,1045,1364,1742,2184,2695,3280,3944,
%T 4692,5529,6460,7490,8624,9867,11224,12700,14300,16029,17892,19894,
%U 22040,24335,26784,29392,32164,35105,38220,41514,44992,48659,52520,56580
%N a(n) = n*(n+1)*(5*n+7)/6.
%C Partial sums of A147875.
%C Equals the fourth right hand column of A175136 for n>=1. - _Johannes W. Meijer_, May 06 2011
%C a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - _Clark Kimberling_, Jun 14 2012
%H Vincenzo Librandi, <a href="/A162148/b162148.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A162147(n) + A000217(n).
%F From _Johannes W. Meijer_, May 06 2011: (Start)
%F G.f.: x*(4+x)/(1-x)^4.
%F a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
%F a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
%F a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
%F a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - _Harvey P. Dale_, May 20 2014
%F E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - _G. C. Greubel_, Mar 31 2021
%p A162148:= n-> n*(n+1)*(5*n+7)/6; seq(A162148(n), n=0..50); # _G. C. Greubel_, Mar 31 2021
%t Table[(n(n+1)(5n+7))/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,4,17,44}, 50] (* _Harvey P. Dale_, May 20 2014 *)
%o (Magma) [n*(n+1)*(5*n+7)/6: n in [0..50]]; // _Vincenzo Librandi_, May 07 2011
%o (PARI) a(n)=n*(n+1)*(5*n+7)/6 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (Sage) [n*(n+1)*(5*n+7)/6 for n in (0..50)] # _G. C. Greubel_, Mar 31 2021
%Y Cf. A002412, A002413, A006331, A016061, A033994.
%Y Cf. A162147, A175136, A190048, A190049, A254407.
%Y Related to A000292 and A091894.
%K nonn,easy
%O 0,2
%A _Vladimir Joseph Stephan Orlovsky_, Jun 25 2009
%E Definition rephrased by _R. J. Mathar_, Jun 27 2009