login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270239
Number of partitions of n unlabeled objects of 6 colors.
2
1, 6, 42, 238, 1260, 6174, 28784, 128046, 548832, 2275372, 9166311, 35987028, 138069505, 518758758, 1912300908, 6926911674, 24688892511, 86685575466, 300137463682, 1025683381758, 3462381505989, 11553577667100, 38134513479591, 124575624677088, 402986660479024
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^C(j+5,5).
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*binomial(d+5, 5), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A075196.
Sequence in context: A180286 A375259 A054613 * A229473 A141834 A344065
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 13 2016
STATUS
approved