login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075193
Expansion of (1-2*x)/(1+x-x^2).
5
1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322, 521, -843, 1364, -2207, 3571, -5778, 9349, -15127, 24476, -39603, 64079, -103682, 167761, -271443, 439204, -710647, 1149851, -1860498, 3010349, -4870847, 7881196, -12752043, 20633239, -33385282, 54018521, -87403803, 141422324
OFFSET
0,2
COMMENTS
"Inverted" Lucas numbers:
The g.f. is obtained inserting 1/x into the g.f. of Lucas sequence and dividing by x. The closed form is a(n)=(-1)^n*a^(n+1)+(-1)^n*b^(n+1), where a=golden ratio and b=1-a, so that a(n)=(-1)^n*L(n+1), L(n)=Lucas numbers.
FORMULA
a(n) = -a(n-1)+a(n-2), a(0)=1, a(1)=-3.
a(n) = term (1,1) in the 1x2 matrix [1,-2] * [-1,1; 1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = A186679(n)+A186679(n-2) for n>1. - Reinhard Zumkeller, Feb 25 2011
a(n) = A039834(n+1)-2*A039834(n). - R. J. Mathar, Sep 27 2014
a(n) = (-1)^(n-1)*A001906(n)/A000045(n). - Taras Goy, Jan 12 2020
E.g.f.: exp(-(1+sqrt(5))*x/2)*(3 + sqrt(5) - 2*exp(sqrt(5)*x))/(1 + sqrt(5)). - Stefano Spezia, Jan 12 2020
MAPLE
a:= n-> (Matrix([[1, -2]]). Matrix([[-1, 1], [1, 0]])^(n))[1, 1]:
seq(a(n), n=0..45); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
CoefficientList[Series[(1 - 2z)/(1 + z - z^2), {z, 0, 40}], z]
PROG
(Haskell)
a075193 n = a075193_list !! n
a075193_list = 1 : -3 : zipWith (-) a075193_list (tail a075193_list)
-- Reinhard Zumkeller, Sep 15 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x)/(1+x-x^2))); // Marius A. Burtea, Jan 12 2020
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 07 2002
STATUS
approved