login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075197 Number of partitions of n balls of n colors. 3
1, 1, 6, 38, 305, 2777, 28784, 330262, 4152852, 56601345, 829656124, 12992213830, 216182349617, 3804599096781, 70540645679070, 1373192662197632, 27982783451615363, 595355578447896291, 13193917702518844859, 303931339674133588444, 7263814501407389465610 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For each integer partition of n, consider each part of size k to be a box containing k balls of up to n color. Order among parts and especially among parts of the same size does not matter. - Olivier Gérard, Aug 26 2016

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

EXAMPLE

Illustration of first terms, ordered by number of parts, size of parts and smallest color of parts, etc.

:

a(1)=1 :

{{1}}:

a(2)=6 = 3+3:

{{1,1}},{{1,2}},{{2,2}},

{{1},{1}},{{1},{2}},{{2},{2}}

:

a(3)=38 = 10+18+10:

{{1,1,1}},{{1,1,2}},{{1,1,3}},{{1,2,2}},{{1,2,3}},{{1,3,3}},

{{2,2,2}},{{2,2,3}},{{2,3,3}},{{3,3,3}},

{{1},{1,1}},{{1},{1,2}},{{1},{1,3}},{{1},{2,2}},{{1},{2,3}},{{1},{3,3}},

{{2},{1,1}},{{2},{1,2}},{{2},{1,3}},{{2},{2,2}},{{2},{2,3}},{{2},{3,3}},

{{3},{1,1}},{{3},{1,2}},{{3},{1,3}},{{3},{2,2}},{{3},{2,3}},{{3},{3,3}},

{{1},{1},{1}},{{1},{1},{2}},{{1},{1},{3}},{{1},{2},{2}},{{1},{2},{3}},{{1},{3},{3}},

{{2},{2},{2}},{{2},{2},{3}},{{2},{3},{3}},{{3},{3},{3}}}}

MAPLE

with(numtheory):

A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*

      binomial(d+k-1, k-1), d=divisors(j))*A(n-j, k), j=1..n)/n)

    end:

a:= n-> A(n, n):

seq(a(n), n=0..20);  # Alois P. Heinz, Sep 26 2012

MATHEMATICA

A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*Binomial[d+k-1, k-1], {d, Divisors[j]}]*A[n-j, k], {j, 1, n}]/n]; a[n_] := A[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

CROSSREFS

Main diagonal of A075196.

Cf. A001700 (n balls of one color in n unlabeled boxes).

Cf. A209668 (boxes are ordered by size but not by content among a given size: order among boxes of the same size matters.),

Cf. A261783 (compositions of balls of n colors: boxes are labeled)

Cf. A252654 (lists instead of boxes : order of balls matter)

Cf. A000262 (lists instead of boxes and all n colors are used)

Cf. A255906 (the c colors used form the interval [1,c])

Cf. A255951 (the n-1 colors used form the interval [1,n-1])

Cf. A255942 (0/1 binary coloring)

Cf. A066186 (only 1 color among n = n * p(n))

Cf. A000110 (the n possible colors are used : set partitions of [n])

Cf. A005651 (the n possible colors are used and order of parts of the same size matters)

Cf. A000670 (the n possible colors are used and order of all parts matters)

Sequence in context: A263855 A221283 A064309 * A276473 A062814 A319194

Adjacent sequences:  A075194 A075195 A075196 * A075198 A075199 A075200

KEYWORD

nonn

AUTHOR

Christian G. Bower, Sep 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 05:00 EDT 2019. Contains 326172 sequences. (Running on oeis4.)