login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252654
Number of multisets of nonempty words with a total of n letters over n-ary alphabet.
9
1, 1, 7, 64, 843, 13876, 276792, 6438797, 170938483, 5091463423, 167965714273, 6074571662270, 238837895468954, 10138497426332796, 461941179848628434, 22478593443737857695, 1163160397700757351363, 63760710281671647692688, 3690276585886363643056992
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(n^j).
a(n) = n-th term of the Euler transform of the powers of n.
a(n) ~ n^(n-3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Mar 14 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - n*x^k))). - Ilya Gutkovskiy, Nov 20 2018
EXAMPLE
a(2) = 7: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}.
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=divisors(j)) *A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*k^d, {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n];
a[n_] := A[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
CROSSREFS
Main diagonal of A144074.
Sequence in context: A173516 A197785 A360465 * A352841 A197787 A024095
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 19 2014
EXTENSIONS
New name from comment by Alois P. Heinz, Sep 21 2018
STATUS
approved