OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( -LambertW(-x * exp(2*x)) ).
E.g.f.: A(x) = -LambertW(-x * exp(2*x)) / (x * exp(2*x)).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (x * exp(2*x))^k / k!.
a(n) = Sum_{k=0..n} (2*k)^(n-k) * (k+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1+LambertW(2*exp(-1))) * 2^n * n^(n-1) / (exp(n-1) * LambertW(2*exp(-1))^n). - Vaclav Kotesovec, Feb 08 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*exp(2*x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-x*exp(2*x))/(x*exp(2*x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(2*x))^k/k!)))
(PARI) a(n) = sum(k=0, n, (2*k)^(n-k)*(k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 08 2023
STATUS
approved