login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360466
E.g.f. satisfies A(x) = exp(2 * x * exp(x) * A(x)).
1
1, 2, 16, 206, 3832, 93962, 2871820, 105355406, 4515648784, 221598121490, 12257187851284, 754703476252310, 51204818674338328, 3796079000648275226, 305328667748448560668, 26483633169003911205278, 2464307301750079915255840, 244872778601760932275686434
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( -LambertW(-2 * x * exp(x)) ).
E.g.f.: A(x) = -LambertW(-2 * x * exp(x)) / (2 * x * exp(x)).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (2 * x * exp(x))^k / k!.
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * (k+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1+LambertW(exp(-1)/2)) * n^(n-1) / (exp(n-1) * LambertW(exp(-1)/2)^n). - Vaclav Kotesovec, Feb 08 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-2*x*exp(x))/(2*x*exp(x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(x))^k/k!)))
(PARI) a(n) = sum(k=0, n, 2^k*k^(n-k)*(k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 08 2023
STATUS
approved