OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( -LambertW(-2 * x * exp(x)) ).
E.g.f.: A(x) = -LambertW(-2 * x * exp(x)) / (2 * x * exp(x)).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (2 * x * exp(x))^k / k!.
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * (k+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1+LambertW(exp(-1)/2)) * n^(n-1) / (exp(n-1) * LambertW(exp(-1)/2)^n). - Vaclav Kotesovec, Feb 08 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-2*x*exp(x))/(2*x*exp(x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(x))^k/k!)))
(PARI) a(n) = sum(k=0, n, 2^k*k^(n-k)*(k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 08 2023
STATUS
approved