login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380262
Expansion of e.g.f. exp( ((1+5*x)^(2/5) - 1)/2 ).
0
1, 1, -2, 16, -206, 3682, -84236, 2348704, -77241380, 2926735516, -125540336024, 6013069027648, -318093606114536, 18418565715581656, -1158626159228481488, 78679416565851286144, -5736477278907382585328, 446936684375920051751440, -37056888825921886749507872
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..n} 5^(n-k) * Stirling1(n,k) * A004211(k) = Sum_{k=0..n} 2^k * 5^(n-k) * Stirling1(n,k) * Bell_k(1/2), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/2)) * 5^n * n! * Sum_{k>=0} binomial(2*k/5,n)/(2^k * k!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(((1+5*x)^(2/5)-1)/2)))
CROSSREFS
KEYWORD
sign,new
AUTHOR
Seiichi Manyama, Jan 18 2025
STATUS
approved