login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380260
Expansion of e.g.f. exp( ((1+2*x)^(3/2) - 1)/3 ).
0
1, 1, 2, 3, 9, 6, 111, -573, 7638, -95751, 1450431, -24643134, 468589617, -9843336567, 226448287794, -5662061186949, 152892006728841, -4434211761771978, 137468475061977663, -4536657554920874181, 158788359466681092966, -5875324355407515077439, 229142457698060305226367
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k) * Stirling1(n,k) * A004212(k) = Sum_{k=0..n} 3^k * 2^(n-k) * Stirling1(n,k) * Bell_k(1/3), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/3)) * 2^n * n! * Sum_{k>=0} binomial(3*k/2,n)/(3^k * k!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(((1+2*x)^(3/2)-1)/3)))
CROSSREFS
Sequence in context: A288842 A108694 A267896 * A199858 A357053 A340442
KEYWORD
sign,new
AUTHOR
Seiichi Manyama, Jan 18 2025
STATUS
approved