login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208340
Triangle of coefficients of polynomials v(n,x) jointly generated with A202390; see the Formula section.
4
1, 2, 2, 3, 6, 3, 4, 13, 14, 5, 5, 24, 41, 30, 8, 6, 40, 96, 109, 60, 13, 7, 62, 196, 308, 262, 116, 21, 8, 91, 364, 743, 868, 590, 218, 34, 9, 128, 630, 1604, 2413, 2240, 1267, 402, 55, 10, 174, 1032, 3186, 5926, 7046, 5424, 2627, 730, 89, 11, 230, 1617
OFFSET
1,2
COMMENTS
v(n,n) = F(n+1), where F=A000045, the Fibonacci numbers.
Alternating row sums of v: (1,0,0,0,0,0,0,0,...).
As triangle T(n,k) with 0 <= k <= n, it is (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x), where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 28 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2) with T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+y*x)/(1-2*x-y*x+x^2-y^2*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000027(n+1), A003946(n), A109115(n), A180031(n) for x = -1, 0, 1, 2, 3 respectively. (End)
EXAMPLE
First five rows:
1;
2, 2;
3, 6, 3;
4, 13, 14, 5;
5, 24, 41, 30, 8;
The first five polynomials v(n,x):
1
2 + 2x
3 + 6x + 3x^2
4 + 13x + 14x^2 + 5x^3
5 + 24x + 41x^2 + 30x^3 + 8x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A202390 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208340 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* u alt. row sums *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* v alt. row sums *)
CROSSREFS
Cf. A202390.
Sequence in context: A075196 A196912 A197079 * A308503 A196967 A210859
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 27 2012
STATUS
approved