OFFSET
1,2
COMMENTS
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x), where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 28 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2) with T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+y*x)/(1-2*x-y*x+x^2-y^2*x^2).
EXAMPLE
First five rows:
1;
2, 2;
3, 6, 3;
4, 13, 14, 5;
5, 24, 41, 30, 8;
The first five polynomials v(n,x):
1
2 + 2x
3 + 6x + 3x^2
4 + 13x + 14x^2 + 5x^3
5 + 24x + 41x^2 + 30x^3 + 8x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A202390 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208340 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* u alt. row sums *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* v alt. row sums *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 27 2012
STATUS
approved