OFFSET
1,3
COMMENTS
coef. of x(n-1) in u(n,x): A000045(n), Fibonacci numbers
coef. of x(n-1) in v(n,x): A000045(n+1)
row sums, u(n,1): A000129
row sums, v(n,1): A001333
alternating row sums, u(n,-1): 1,0,1,0,1,0,1,0,1,0,...
alternating row sums, v(n,-1): 1,-1,1,-1,1,-1,1,-1,...
Subtriangle of the triangle given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
LINKS
C. Kimberling, Enumeration of paths, compositions of integers and Fibonacci numbers, Fib. Quarterly 39 (5) (2001) 430-435 Figure 2.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n :
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+x*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
1...2
1...3...3
1...4...7....5
1...5...12...15...8
First five polynomials v(n,x):
1
1 + 2x
1 + 3x + 3x^2
1 + 4x + 7x^2 + 5x^3
1 + 5x + 12x^2 + 15x^3 + 8x^4
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, ...) begins :
1
1, 0
1, 2, 0
1, 3, 3, 0
1, 4, 7, 5, 0
1, 5, 12, 15, 8, 0
1, 6, 18, 31, 30, 13, 0
1, 7, 25, 54, 73, 58, 21, 0 . Philippe Deléham, Apr 09 2012
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208336 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208337 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (*u row sums*)
Table[v[n, x] /. x -> 1, {n, 1, z}] (*v row sums*)
Table[u[n, x] /. x -> -1, {n, 1, z}](*u alt. row sums*)
Table[v[n, x] /. x -> -1, {n, 1, z}](*v alt. row sums*)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 26 2012
STATUS
approved