login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208337
Triangle of coefficients of polynomials v(n,x) jointly generated with A208836; see the Formula section.
5
1, 1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 12, 15, 8, 1, 6, 18, 31, 30, 13, 1, 7, 25, 54, 73, 58, 21, 1, 8, 33, 85, 145, 162, 109, 34, 1, 9, 42, 125, 255, 361, 344, 201, 55, 1, 10, 52, 175, 413, 701, 850, 707, 365, 89, 1, 11, 63, 236, 630, 1239, 1806, 1918, 1416, 655
OFFSET
1,3
COMMENTS
coef. of x(n-1) in u(n,x): A000045(n), Fibonacci numbers
coef. of x(n-1) in v(n,x): A000045(n+1)
row sums, u(n,1): A000129
row sums, v(n,1): A001333
alternating row sums, u(n,-1): 1,0,1,0,1,0,1,0,1,0,...
alternating row sums, v(n,-1): 1,-1,1,-1,1,-1,1,-1,...
Subtriangle of the triangle given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
LINKS
C. Kimberling, Enumeration of paths, compositions of integers and Fibonacci numbers, Fib. Quarterly 39 (5) (2001) 430-435 Figure 2.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n :
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+x*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
1...2
1...3...3
1...4...7....5
1...5...12...15...8
First five polynomials v(n,x):
1
1 + 2x
1 + 3x + 3x^2
1 + 4x + 7x^2 + 5x^3
1 + 5x + 12x^2 + 15x^3 + 8x^4
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, ...) begins :
1
1, 0
1, 2, 0
1, 3, 3, 0
1, 4, 7, 5, 0
1, 5, 12, 15, 8, 0
1, 6, 18, 31, 30, 13, 0
1, 7, 25, 54, 73, 58, 21, 0 . Philippe Deléham, Apr 09 2012
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208336 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208337 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (*u row sums*)
Table[v[n, x] /. x -> 1, {n, 1, z}] (*v row sums*)
Table[u[n, x] /. x -> -1, {n, 1, z}](*u alt. row sums*)
Table[v[n, x] /. x -> -1, {n, 1, z}](*v alt. row sums*)
CROSSREFS
Cf. A208336.
Sequence in context: A133804 A185943 A352001 * A208335 A208597 A179943
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 26 2012
STATUS
approved