login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352001
Square array A(n, k), n, k >= 1, read by antidiagonals upwards; A(n, k) = Product_{ i >= 1 } prime(k*i)^e_i where n = Product_{ i >= 1 } prime(i)^e_i (where prime(i) denotes the i-th prime number).
3
1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 9, 13, 7, 1, 6, 13, 25, 19, 11, 1, 7, 21, 23, 49, 29, 13, 1, 8, 19, 65, 37, 121, 37, 17, 1, 9, 27, 37, 133, 47, 169, 43, 19, 1, 10, 49, 125, 53, 319, 61, 289, 53, 23, 1, 11, 39, 169, 343, 71, 481, 73, 361, 61, 29, 1
OFFSET
1,2
COMMENTS
In other words, in prime factorization of n, replace prime(i) by prime(k*i).
For any k >= 1, n -> A(n, k) is completely multiplicative.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (antidiagonals n = 1..150 flattened)
FORMULA
A(A(n, k), k') = A(n, k*k').
A(n, 1) = n.
A(n, 2) = A297002(n).
A(1, k) = 1.
A(2, k) = prime(k) (the k-th prime number).
A(3, k) = prime(2*k) = A031215(k).
A(4, k) = A001248(k).
EXAMPLE
Square array A(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1
2| 2 3 5 7 11 13 17 19 23 29
3| 3 7 13 19 29 37 43 53 61 71
4| 4 9 25 49 121 169 289 361 529 841
5| 5 13 23 37 47 61 73 89 103 113
6| 6 21 65 133 319 481 731 1007 1403 2059
7| 7 19 37 53 71 89 107 131 151 173
8| 8 27 125 343 1331 2197 4913 6859 12167 24389
9| 9 49 169 361 841 1369 1849 2809 3721 5041
10| 10 39 115 259 517 793 1241 1691 2369 3277
MAPLE
A:= (n, k)-> mul(ithprime(k*numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):
seq(seq(A(d+1-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 28 2022
MATHEMATICA
Table[If[# == 1, 1, Times @@ Map[Prime[#3*PrimePi[#1]]^#2 & @@ Flatten[{#1, k}] &, FactorInteger[#]]] &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 28 2022 *)
PROG
(PARI) A(n, k) = { my (f=factor(n)); prod (i=1, #f~, prime(k * primepi(f[i, 1])) ^ f[i, 2]) }
CROSSREFS
Main diagonal gives A352028.
Sequence in context: A055129 A133804 A185943 * A208337 A208335 A208597
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Feb 27 2022
STATUS
approved