login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208335
Triangle of coefficients of polynomials v(n,x) jointly generated with A208834; see the Formula section.
4
1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 14, 15, 6, 1, 6, 25, 36, 23, 8, 1, 7, 41, 76, 69, 36, 9, 1, 8, 63, 147, 176, 123, 48, 11, 1, 9, 92, 266, 400, 355, 192, 66, 12, 1, 10, 129, 456, 834, 910, 635, 292, 82, 14, 1, 11, 175, 747, 1626, 2131, 1833, 1065, 410, 105, 15, 1
OFFSET
1,2
COMMENTS
row sums, u(n,1): A000129
row sums, v(n,1): A001333
alternating row sums, u(n,-1): 1,0,-1,-2,-3,-4,-5,-6,...
alternating row sums, v(n,-1): 1,1,1,1,1,1,1,1,1,1,1,...
Subtriangle of the triangle T(n,k) given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 26 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x+x^2-y^2*x^2)/(1-2*x+x^2-y*x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0. (End)
EXAMPLE
First five rows:
1;
2, 1;
3, 3, 1;
4, 7, 5, 1;
5, 14, 15, 6, 1;
First five polynomials v(n,x):
1
2 + x
3 + 3x + x^2
4 + 7x + 5x^2 + x^3
5 + 14x + 15x^2 + 6x^3 + x^4
From Philippe Deléham, Mar 26 2012: (Start)
(1, 1, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 3, 1, 0;
4, 7, 5, 1, 0;
5, 14, 15, 6, 1, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208334 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208335 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *)
Table[u[n, x] /. x -> -1, {n, 1, z}](* u alt. row sums *)
Table[v[n, x] /. x -> -1, {n, 1, z}](* v alt. row sums *)
CROSSREFS
Cf. A208334.
Sequence in context: A185943 A352001 A208337 * A208597 A179943 A089944
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 26 2012
STATUS
approved