The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208335 Triangle of coefficients of polynomials v(n,x) jointly generated with A208834; see the Formula section. 4
 1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 14, 15, 6, 1, 6, 25, 36, 23, 8, 1, 7, 41, 76, 69, 36, 9, 1, 8, 63, 147, 176, 123, 48, 11, 1, 9, 92, 266, 400, 355, 192, 66, 12, 1, 10, 129, 456, 834, 910, 635, 292, 82, 14, 1, 11, 175, 747, 1626, 2131, 1833, 1065, 410, 105, 15, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS row sums, u(n,1):  A000129 row sums, v(n,1):  A001333 alternating row sums, u(n,-1): 1,0,-1,-2,-3,-4,-5,-6,... alternating row sums, v(n,-1): 1,1,1,1,1,1,1,1,1,1,1,... Subtriangle of the triangle T(n,k) given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012 LINKS FORMULA u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = (x+1)*u(n-1,x) + v(n-1,x), where u(1,x)=1, v(1,x)=1. From Philippe Deléham, Mar 26 2012: (Start) As DELTA-triangle T(n,k) with 0 <= k <= n: G.f.: (1-x+x^2-y^2*x^2)/(1-2*x+x^2-y*x^2-y^2*x^2). T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0. (End) EXAMPLE First five rows:   1;   2,  1;   3,  3,  1;   4,  7,  5,  1;   5, 14, 15,  6,  1; First five polynomials v(n,x):   1   2 +   x   3 +  3x +   x^2   4 +  7x +  5x^2 +  x^3   5 + 14x + 15x^2 + 6x^3 + x^4 From Philippe Deléham, Mar 26 2012: (Start) (1, 1, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 0, -1, 0, 0, ...) begins:   1;   1,  0;   2,  1,  0;   3,  3,  1,  0;   4,  7,  5,  1,  0;   5, 14, 15,  6,  1,  0; (End) MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]  (* A208334 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]  (* A208335  *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* u row sums *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* v row sums *) Table[u[n, x] /. x -> -1, {n, 1, z}](* u alt. row sums *) Table[v[n, x] /. x -> -1, {n, 1, z}](* v alt. row sums *) CROSSREFS Cf. A208334. Sequence in context: A133804 A185943 A208337 * A208597 A179943 A089944 Adjacent sequences:  A208332 A208333 A208334 * A208336 A208337 A208338 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Feb 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 21:27 EDT 2021. Contains 345041 sequences. (Running on oeis4.)