login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208332
Triangle of coefficients of polynomials u(n,x) jointly generated with A208333; see the Formula section.
4
1, 1, 1, 1, 1, 4, 1, 1, 6, 10, 1, 1, 8, 16, 28, 1, 1, 10, 22, 52, 76, 1, 1, 12, 28, 80, 156, 208, 1, 1, 14, 34, 112, 256, 472, 568, 1, 1, 16, 40, 148, 376, 832, 1408, 1552, 1, 1, 18, 46, 188, 516, 1296, 2640, 4176, 4240, 1, 1, 20, 52, 232, 676, 1872, 4320
OFFSET
1,6
COMMENTS
Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - 2*y*x + y*x^2 - 2*y^2*x^2)/(1 - x - 2*y*x + 2*y*x^2 - 2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
EXAMPLE
First five rows:
1;
1, 1;
1, 1, 4;
1, 1, 6, 10;
1, 1, 8, 16, 28;
First five polynomials u(n,x):
1, 1 + x, 1 + x + 4x^2, 1 + x + 6x^2 + 10x^3, 1 + x + 8x^2 + 16x^3 + 28x^4.
From Philippe Deléham, Apr 09 2012: (Start)
(1, 0, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 1, 4, 0;
1, 1, 6, 10, 0;
1, 1, 8, 16, 28, 0;
1, 1, 10, 22, 52, 76, 0;
1, 1, 12, 28, 80, 156, 208, 0;
... (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208332 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208333 *)
CROSSREFS
Cf. A208332.
Sequence in context: A174376 A131399 A069322 * A075112 A202687 A046554
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 26 2012
STATUS
approved